183 research outputs found

    Reflections on the triptych of meristems that build flowering branches in tomato

    Full text link
    peer reviewedBranching is an important component determining crop yield. In tomato, the sympodial pattern of shoot and inflorescence branching is initiated at floral transition and involves the precise regulation of three very close meristems: i) the shoot apical meristem (SAM) that undergoes the first transition to flower meristem (FM) fate, ii) the inflorescence sympodial meristem (SIM) that emerges on its flank and remains transiently indeterminate to continue flower initiation, and iii) the shoot sympodial meristem (SYM), which is initiated at the axil of the youngest leaf primordium and takes over shoot growth before forming itself the next inflorescence. The proper fate of each type of meristems involves the spatiotemporal regulation of FM genes, since they all eventually terminate in a flower, but also the transient repression of other fates since conversions are observed in different mutants. In this paper, we summarize the current knowledge about the genetic determinants of meristem fate in tomato and share the reflections that led us to identify sepal and flower abscission zone initiation as a critical stage of FM development that affects the branching of the inflorescence

    A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    Get PDF
    BACKGROUND: Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. RESULTS: An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. CONCLUSION: The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes

    Mutagenesis of Plants Overexpressing CONSTANS

    Full text link

    LED Color Gradient As A New Screening Tool For Rapid Phenotyping Of Plant Responses To Light Quality

    Full text link
    Background The increasing demand for local food production is fueling high interest in the development of controlled environment agriculture. In particular, LED technology brings energy-saving advantages together with the possibility to manipulate plant phenotypes through light quality control. However, optimizing light quality is required for each cultivated plant and specific purpose. Findings In this paper, it is shown that the combination of LED gradient setups with imaging-based non-destructive plant phenotyping constitutes an interesting new screening tool with the potential to improve speed, logistics, and information output. To validate this concept, an experiment was performed to evaluate the effects of a complete range of Red:Blue ratios on seven plant species: Arabidopsis thaliana, Brachypodium distachyon, Euphorbia peplus, Ocimum basilicum, Oryza sativa, Solanum lycopersicum, and Setaria viridis. Plants were exposed during 30 days to the light gradient and showed significant, but species-dependent, responses in terms of dimension, shape, and color. A time series analysis of phenotypic descriptors highlighted growth changes but also transient responses of plant shapes to the Red:Blue ratio. Conclusion This approach, which generated a large reusable dataset, can be adapted for addressing specific needs in crop production or fundamental questions in photobiology.VeLire, Tropical Plant Factory (Plant'HP

    JOINTLESS Maintains Inflorescence Meristem Identity in Tomato.

    Full text link
    peer reviewedJOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ), and encodes a MADS-box protein of the SVP/AGL24 sub-family. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared j mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c, and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutants. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes, and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems

    Exploring the mechanisms of photoperiod sensing in Brachypodium distachyon

    Full text link
    In crops, the proper timing of flowering, which relies on the coordination of exogenous cues with an endogenous developmental program, is crucial to maximize yields. In Brachypodium distachyon, a model temperate grass, the perception of the increasing day lengths of the spring is key to promote the induction of flowering through a complex interplay between the photoperiodic pathway and circadian clock-controlled processes. Here, we summarize the current knowledge of the flowering time control in B. distachyon and describe a mutant allele of the EARLY FLOWERING 3 (ELF3) gene, which was identified through a forward genetic screening for early flowering phenotypes under short day photoperiods. The mutation of elf3 accelerates flowering under most tested photoperiods. This mutant remained sensitive to vernalization but not to changes in the ambient temperature. The early flowering phenotype is corroborated, at the molecular level, with an increase in the expression of genes promoting flowering, the deregulation of the circadian clock rhythms, and the suppression of the expression of the short-day marker FTL9. Finally, to explore the mechanisms through which the photoperiodic pathway regulates flowering, we tested the effect of night breaks and light quality on the induction of flowering in B. distachyon

    書評論文

    Get PDF
    Effect of chilling on gene expression in the leaves of two maize hybrids. The 7-day chilling treatment (10 °C day/4 °C night) was applied at about the 6-VL stage. Analyses were performed at the end of the chilling treatment for treated plants or 1 day after the beginning of the treatment for control plants in order to compare plants at the same developmental stage. a and b are biological replicates of Fig. 6. Data are means ± se of 3 technical replicates. Gene abbreviations: ICE1 (INDUCER OF CBF/DREB EXPRESSION 1), DREB1 (DROUGHT-RESPONSIVE ELEMENT BINDING), CDKA1 (CYCLIN DEPENDENT KINASE A 1), CYCA3 (CYCLIN A 3), KRP1 (CYCLIN-DEPENDENT KINASE INHIBITOR 1), EXPA4 (ALPHA EXPANSIN 4), EXPB2 (BETA EXPANSIN 2), GGR (GERANYLGERANYL REDUCTASE), CAB1 (CHLOROPHYLL A/B BINDING PROTEIN), psbS (CP22 PSII subunit), VDE (VIOLAXANTHIN DE-EPOXIDASE), PEPC (PHOSPHOENOLPYRUVATE CARBOXYLASE), PPDK (PYRUVATE, ORTHOPHOSPHATE DIKINASE) and rbcS (RUBISCO small subunit). (PDF 351 kb
    corecore