51 research outputs found
Understanding Human-Plasmodium falciparum Immune Interactions Uncovers the Immunological Role of Worms
BACKGROUND: Former studies have pointed to a monocyte-dependent effect of antibodies in protection against malaria and thereby to cytophilic antibodies IgG1 and IgG3, which trigger monocyte receptors. Field investigations have further documented that a switch from non-cytophilic to cytophilic classes of antimalarial antibodies was associated with protection. The hypothesis that the non-cytophilic isotype imbalance could be related to concomittant helminthic infections was supported by several interventions and case-control studies. METHODS AND FINDINGS: We investigated here the hypothesis that the delayed acquisition of immunity to malaria could be related to a worm-induced Th2 drive on antimalarial immune responses. IgG1 to IgG4 responses against 6 different parasite-derived antigens were analyzed in sera from 203 Senegalese children, half carrying intestinal worms, presenting 421 clinical malaria attacks over 51 months. Results show a significant correlation between the occurrence of malaria attacks, worm carriage (particularly that of hookworms) and a decrease in cytophilic IgG1 and IgG3 responses and an increase in non-cytophilic IgG4 response to the merozoite stage protein 3 (MSP3) vaccine candidate. CONCLUSION: The results confirm the association with protection of anti-MSP3 cytophilic responses, confirm in one additional setting that worms increase malaria morbidity and show a Th2 worm-driven pattern of anti-malarial immune responses. They document why large anthelminthic mass treatments may be worth being assessed as malaria control policies
A Conserved Multi-Gene Family Induces Cross-Reactive Antibodies Effective in Defense against Plasmodium falciparum
BACKGROUND: Two related merozoite surface proteins, MSP3 and MSP6, have previously been identified as targets of antibody-dependent cellular inhibition (ADCI), a protective mechanism against Plasmodium falciparum malaria. Both MSP3 and MSP6 share a common characteristic small N-terminal signature amino-acid stretch (NLRNA/G), a feature similar to MSP3-like orthologs identified in other human and primate malaria parasites. METHODS/RESULTS: This signature amino-acid sequence led to the identification of eight ORFs contiguously located on P. falciparum chromosome 10. Our subsequent investigations on their expression, localization, sequence conservation, epitope sharing, immunogenicity and the functional role of antibodies in defense are reported here. Six members of P. falciparum MSP3-multigene family share similar sequence organization within their C-terminal regions, are simultaneously expressed as merozoite surface proteins and are highly conserved among parasite isolates. Each of these proteins is a target of naturally occurring antibodies effective at parasite killing in ADCI assays. Moreover, both naturally occurring antibodies and those generated by immunization display cross-reactivity with other members of the family and exhibit varied binding avidities. CONCLUSIONS/SIGNIFICANCE: The unusual characteristics of the MSP3 multi-gene family lead us to hypothesize that the simultaneous expression of targets eliciting cross-reactive antibody responses capable of controlling parasite densities could represent an immune process selected through evolution to maintain homeostasis between P. falciparum and human hosts; a process that allows the continuous transmission of the parasite without killing the host. Our observations also have practical consequences for vaccine development by suggesting MSP3 vaccine efficacy might be improved when combined with the various C-terminus regions of the MSP3 family members to generate a wider range of antibodies acting and to increase vaccine immunogenicity in varied human genetic backgrounds
Travelers With Cutaneous Leishmaniasis Cured Without Systemic Therapy
Guidelines recommend wound care and/or local therapy as first-line treatment for cutaneous leishmaniasis. An analysis of a referral treatment program in 135 travelers showed that this approach was feasible in 62% of patients, with positive outcome in 83% of evaluable patient
Non-Standard Errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
Biomarkers for susceptibility to infection and disease severity in human malaria
Malaria remains a major infectious disease that affects millions of people. Once infected with Plasmodium parasites, a host can develop a broad range of clinical presentations, which result from complex interactions between factors derived from the host, the parasite and the environment. Intense research has focused on the identification of reliable predictors for exposure, susceptibility to infection and the development of severe complications during malaria. Although most promising markers are based on the current understanding of malaria immunopathogenesis, some are also focused more broadly on mechanisms of tissue damage and inflammation. Taken together, these markers can help optimise therapeutic strategies and reduce disease burden. Here, we review the recent advances in the identification of malarial biomarkers, focusing on those related to parasite exposure and disease susceptibility. We also discuss priorities for research in biomarkers for severe malaria
Recommended from our members
Non-standard errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
Extracting information from options markets : smiles, state-price densities and risk-aversion
International audienc
- …