5 research outputs found

    Comparison of QG-Induced Dispersion with Standard Physics Effects

    Full text link
    One of the predictions of quantum gravity phenomenology is that, in situations where Planck-scale physics and the notion of a quantum spacetime are relevant, field propagation will be described by a modified set of laws. Descriptions of the underlying mechanism differ from model to model, but a general feature is that electromagnetic waves will have non-trivial dispersion relations. A physical phenomenon that offers the possibility of experimentally testing these ideas in the foreseeable future is the propagation of high-energy gamma rays from GRB's at cosmological distances. With the observation of non-standard dispersion relations within experimental reach, it is thus important to find out whether there are competing effects that could either mask or be mistaken for this one. In this letter, we consider possible effects from standard physics, due to electromagnetic interactions, classical as well as quantum, and coupling to classical geometry. Our results indicate that, for currently observed gamma-ray energies and estimates of cosmological parameter values, those effects are much smaller than the quantum gravity one if the latter is first-order in the energy; some corrections are comparable in magnitude with the second-order quantum gravity ones, but they have a very different energy dependence.Comment: 8 pages; Version to be published in CQG as a letter; Includes some new comments and references, but no changes in the result

    Phenomenological description of quantum gravity inspired modified classical electrodynamics

    Get PDF
    We discuss a large class of phenomenological models incorporating quantum gravity motivated corrections to electrodynamics. The framework is that of electrodynamics in a birefringent and dispersive medium with non-local constitutive relations, which are considered up to second order in the inverse of the energy characterizing the quantum gravity scale. The energy-momentum tensor, Green functions and frequency dependent refraction indices are obtained, leading to departures from standard physics. The effective character of the theory is also emphasized by introducing a frequency cutoff. The analysis of its effects upon the standard notion of causality is performed, showing that in the radiation regime the expected corrections get further suppressed by highly oscillating terms, thus forbiding causality violations to show up in the corresponding observational effects.Comment: 14 pages, to be published in Obregon Festschrift 2006, Gen. Rel. and Gra

    The Kerr/CFT correspondence and its extensions

    No full text
    corecore