11 research outputs found
Gel-phase vesicles buckle into specific shapes
International audienceOsmotic deflation of giant vesicles in the rippled gel-phase gives rise to a large variety of novel faceted shapes. These shapes are also found from a numerical approach by using an elastic surface model. A shape diagram is proposed based on the model that accounts for the vesicle size and ratios of three mechanical constants: in-plane shear elasticity and compressibility (usually neglected) and out-of-plane bending of the membrane. The comparison between experimental and simulated vesicle morphologies reveals that they are governed by a typical elasticity length, of the order of one micron, and must be described with a large Poisson's ratio
Optically Assisted Surface Functionalization for Protein Arraying in Aqueous Media
International audienc
Scalable chemical synthesis of doped silicon nanowires for energy applications
A versatile, low-cost and easily scalable synthesis method is presented for producing silicon nanowires (SiNWs) as a pure powder. It applies air-stable diphenylsilane as a Si source and gold nanoparticles as a catalyst and takes place in a sealed reactor at 420 °C (pressure 0.4%. When used in symmetric supercapacitor devices, 1% P-doped SiNWs exhibit an areal capacity of 0.25 mF cm−2 and retention of 80% of the initial capacitance after one million cycles, demonstrating excellent cycling stability of the SiNW electrodes in the presence of organic electrolytes