3 research outputs found
Antifungal susceptibility of the endophytic fungus Rhinocladiella similis (URM 7800) isolated from the Caatinga dry forest in Brazil
The present study reports a new occurrence of Rhinocladiella similis isolated as an endophytic fungus in the Caatinga dry tropical forest in Brazil and describes its antifungal susceptibility. The isolate R. similis URM 7800 was obtained from leaves of the medicinal plant Myracrodruon urundeuva. Its morphological characterization was performed on potato dextrose agar medium and molecular analysis using the ITS rDNA sequence. The antifungal susceptibility profile was defined using the Clinical and Laboratory Standards Institute (CLSI) protocol M38-A2. The colony of isolate URM 7800 showed slow growth, with an olivaceous-gray color and powdery mycelium; in microculture, it showed the typical features of R. similis. In the antifungal susceptibility test, isolate URM 7800 showed high minimal inhibitory concentration (MIC) values for amphotericin B (>16 μg/mL), voriconazole (16 μg/mL), terbinafine (>0.5 μg/mL), and caspofungin (>8 μg/mL), among other antifungal drugs. Pathogenic melanized fungi are frequently isolated in environments where humans may be exposed, and these data show that it is essential to know if these isolates possess antifungal resistance
SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal
Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by
the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration
with more than 50 laboratories distributed nationwide.
Methods By applying recent phylodynamic models that allow integration of individual-based
travel history, we reconstructed and characterized the spatio-temporal dynamics of SARSCoV-2 introductions and early dissemination in Portugal.
Results We detected at least 277 independent SARS-CoV-2 introductions, mostly from
European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland),
which were consistent with the countries with the highest connectivity with Portugal.
Although most introductions were estimated to have occurred during early March 2020, it is
likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the
first cases were confirmed.
Conclusions Here we conclude that the earlier implementation of measures could have
minimized the number of introductions and subsequent virus expansion in Portugal. This
study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.We gratefully acknowledge to Sara Hill and Nuno Faria (University of Oxford) and
Joshua Quick and Nick Loman (University of Birmingham) for kindly providing us with
the initial sets of Artic Network primers for NGS; Rafael Mamede (MRamirez team,
IMM, Lisbon) for developing and sharing a bioinformatics script for sequence curation
(https://github.com/rfm-targa/BioinfUtils); Philippe Lemey (KU Leuven) for providing
guidance on the implementation of the phylodynamic models; Joshua L. Cherry
(National Center for Biotechnology Information, National Library of Medicine, National
Institutes of Health) for providing guidance with the subsampling strategies; and all
authors, originating and submitting laboratories who have contributed genome data on
GISAID (https://www.gisaid.org/) on which part of this research is based. The opinions
expressed in this article are those of the authors and do not reflect the view of the
National Institutes of Health, the Department of Health and Human Services, or the
United States government. This study is co-funded by Fundação para a Ciência e Tecnologia
and Agência de Investigação Clínica e Inovação Biomédica (234_596874175) on
behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study
come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by
COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation
(POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal
Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL
2020 Partnership Agreement, through the European Regional Development Fund
(ERDF), and by Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio
Mycological diversity description II
Here, Diaporthe myracrodruonis is introduced as new species from Brazil, isolated as endophyte from Myracrodruon urundeuva. Asterina mandaquiensis is epitypified and ilustrated for the first time. Serpula similis is reported as new to the Neotropics, while Perenniporia centrali-africana is reported for the first time as endophyte and Preussia africana as endophyte from Spondias tuberosa in Caatinga in Brazil