2 research outputs found

    Life Cycle Cost Analysis of a Diesel/Photovoltaic Hybrid Power Generating System

    Get PDF
    This work is a Life Cycle Cost (LCC) analysis of a diesel/photovoltaic hybrid power generating system for an off-grid residential building in Enugu, Nigeria. It aims at optimizing different hybrid system configurations, and comparing the result obtained with the photovoltaic standalone (PVSA) system and conventional diesel standalone (DSA) system. The lifetime of the project is 25 years and a real interest rate of 9% per annum is assumed for the system analysis. The average hourly electrical load demand data for residential sector in Enugu were obtained from the power holding company of Nigeria (PHCN). The solar resource data for the location for the year 2010 were gotten from the NASA Langley Research Centre. The sizes of different components were determined to make sure their sizes suit the load demand. A PV standalone system is firstly sized, after which modules of the PV array are removed in sequence to get six different sizes, at the same time, introducing the diesel generator to make a hybrid system. The hours of operation of the diesel generator increases as modules are removed from the PV array. Optimization of the hybrid system is done to determine the system configuration that would satisfy the load demand at minimum cost. The result shows that the hybrid system with 20 modules and a 2.5 kVA diesel generator will serve the load at minimum cost. A life cycle cost analysis of the systems is done using the Net Present Value (NPV) and Internal Rate of Return (IRR). The result shows that the LCC of the hybrid system is N3,459,274.00 that of DSA system is N7,098,192.00 and N3,594,881.00 for the PV standalone system. The NPV of the hybrid system is N3,638,918.00 when compared with the DSA system and the internal rate of return is at 26.3%. The NPV of the PV standalone system when compared with the DSA system is N3,428,747.00 with its internal rate of return at 24.6%. The results obtained show that the diesel/photovoltaic hybrid system is economically the best option for power generatio

    Finite Element Analysis for Stress-Strain Parameter of Projectile Impeded Glass Fibre Reinforced Polyester (Gfrp) Composites

    Get PDF
    For the treatment of progressive damage, spatial discretization is required so that numerical techniques such as the finite element method or finite difference method would be advantageous. Finite element and finite difference techniques have also been applied to impact problems because they are more versatile at modeling boundary conditions and local phenomena such as stresses and strain under a point load. This paper investigates the stress-strain magnitude on body amour composites of glass fibre reinforced polyester (GFRP), when hit with ogival and conical nosed projectiles through the application of finite element analysis using ANSYS software version 10.1. The finite element result of the plain stress analysis shows that the composite is stronger in the longitudinal direction. This is supported by the fact that the maximum stress of 328.125MPa was recorded in the X direction while the maximum stress of 57.726MPa was recorded in the Y direction. The analysis also indicates that the maximum influence of the stress was experienced around the incident hole and the minimum at the exterior boarders of the samples. Keywords: Finite Element, Plain Stress Analysis, Projectiles, ANSYS Software, Body Amour, Fibre Reinforcement
    corecore