11 research outputs found
Shell model calculation of the beta- and beta+ partial halflifes of 54Mn and other unique second forbidden beta decays
The nucleus 54Mn has been observed in cosmic rays. In astrophysical
environments it is fully stripped of its atomic electrons and its decay is
dominated by the beta- branch to the 54Fe ground state. Application of 54Mn
based chronometer to study the confinement of the iron group cosmic rays
requires knowledge of the corresponding halflife, but its measurement is
impossible at the present time. However, the branching ratio for the related
beta+ decay of 54Mn was determined recently. We use the shell model with only a
minimal truncation and calculate both beta+ and beta- decay rates of 54Mn. Good
agreement for the beta+ branch suggests that the calculated partial halflife of
the beta- decay, (4.94 \pm 0.06) x 10^5 years, should be reliable. However,
this halflife is noticeably shorter than the range 1-2 x 10^6 y indicated by
the fit based on the 54Mn abundance in cosmic rays. We also evaluate other
known unique second forbidden beta decays from the nuclear p and sd shells
(10Be, 22Na, and two decay branches of 26Al) and show that the shell model can
describe them with reasonable accuracy as well.Comment: 4 pages, RevTeX, 2 figure
Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of the inter-particle interactions
We study the magnetic properties of spherical Co clusters with diameters
between 0.8 nm and 5.4 nm (25 to 7500$ atoms) prepared by sequential sputtering
of Co and Al2O3. The particle size distribution has been determined from the
equilibrium susceptibility and magnetization data and it is compared to
previous structural characterizations. The distribution of activation energies
was independently obtained from a scaling plot of the ac susceptibility.
Combining these two distributions we have accurately determined the effective
anisotropy constant Keff. We find that Keff is enhanced with respect to the
bulk value and that it is dominated by a strong anisotropy induced at the
surface of the clusters. Interactions between the magnetic moments of adjacent
layers are shown to increase the effective activation energy barrier for the
reversal of the magnetic moments. Finally, this reversal is shown to proceed
classically down to the lowest temperature investigated (1.8 K).Comment: 13 figures submitted to Phys. Rev.