103 research outputs found
A symmetric rank-one Quasi-Newton line-search method using negative curvature directions
We propose a quasi-Newton line-search method that uses negative curvature directions for solving unconstrained optimization problems. In this method, the symmetric rank-one (SR1) rule is used to update the Hessian approximation. The SR1 update rule is known to have a good numerical performance; however, it does not guarantee positive definiteness of the updated matrix. We first discuss the details of the proposed algorithm and then concentrate on its numerical efficiency. Our extensive computational study shows the potential of the proposed method from different angles, such as; its second order convergence behavior, its exceeding performance when compared to two other existing packages, and its computation profile illustrating the possible bottlenecks in the execution time. We then conclude the paper with the convergence analysis of the proposed method
Implementation of a fixing strategy and parallelization in a recent global optimization method
Electromagnetism-like Mechanism (EM) heuristic is a population-based stochastic global optimization method inspired by the attraction-repulsion mechanism of the electromagnetism theory. EM was originally proposed for solving continuous global optimization problems with bound constraints and it has been shown that the algorithm performs quite well compared to some other global optimization methods. In this work, we propose two extensions to improve the performance of the original algorithm: First, we introduce a fixing strategy that provides a mechanism for not being trapped in local minima, and thus, improves the effectiveness of the search. Second, we use the proposed fixing strategy to parallelize the algorithm and utilize a cooperative parallel search on the solution space. We then evaluate the performance of our study under three criteria: the quality of the solutions, the number of function evaluations and the number of local minima obtained. Test problems are generated by an algorithm suggested in the literature that builds test problems with varying degrees of difficulty. Finally, we benchmark our results with that of the
Knitro solver with the multistart option set
Bolstering Stochastic Gradient Descent with Model Building
Stochastic gradient descent method and its variants constitute the core
optimization algorithms that achieve good convergence rates for solving machine
learning problems. These rates are obtained especially when these algorithms
are fine-tuned for the application at hand. Although this tuning process can
require large computational costs, recent work has shown that these costs can
be reduced by line search methods that iteratively adjust the stepsize. We
propose an alternative approach to stochastic line search by using a new
algorithm based on forward step model building. This model building step
incorporates second-order information that allows adjusting not only the
stepsize but also the search direction. Noting that deep learning model
parameters come in groups (layers of tensors), our method builds its model and
calculates a new step for each parameter group. This novel diagonalization
approach makes the selected step lengths adaptive. We provide convergence rate
analysis, and experimentally show that the proposed algorithm achieves faster
convergence and better generalization in well-known test problems. More
precisely, SMB requires less tuning, and shows comparable performance to other
adaptive methods
Türkiye’de bulunan yoğun bakımlarda sabun, kağıt havlu ve alkol bazlı el dezenfektanı yeterli mi?: Phokai çalışması sonuçları
Introduction: Hand hygiene is one of the most effective infection control measures to prevent the spread of healthcare-associated infections (HCAI). Water, soap, paper towel and hand disinfectant must be available and adequate in terms of effective hand hygiene. The adequacy of hand hygiene products or keeping water-soap and paper towel is still a problem for many developing countries like Turkey. In this multicenter study, we analyzed the adequacy in number and availability of hand hygiene products.Materials and Methods: This study was performed in all intensive care units (ICUs) of 41 hospitals (27 tertiary-care educational, 10 state and four private hospitals) from 22 cities located in seven geographical regions of Turkey. We analyzed water, soap, paper towel and alcohol-based hand disinfectant adequacy on four different days, two of which were in summer during the vacation time (August, 27th and 31st 2016) and two in autumn (October, 12th and 15th 2016).Results: The total number of ICUs and intensive care beds in 41 participating centers were 214 and 2357, respectively. Overall, there was no soap in 3-11% of sinks and no paper towel in 10-18% of sinks while there was no alcohol-based hand disinfectant in 1-4.7% of hand disinfectant units on the observation days. When we compared the number of sinks with soap and/or paper towel on weekdays vs. weekends, there was no significant difference in summer. However, on autumn weekdays, the number of sinks with soap and paper towel was significantly lower on weekend days (p<0.0001, p<0.0001) while the number of hand disinfectant units with alcohol-based disinfectant was significantly higher (p<0.0001).Conclusion: There should be adequate and accessible hand hygiene materials for effective hand hygiene. In this study, we found that soap and paper towels were inadequate on the observation days in 3-11% and 10-18% of units, respectively. Attention should be paid on soap and paper towel supply at weekends as well
Identifying risk factors for blood culture negative infective endocarditis: An international ID-IRI study
Background: Blood culture-negative endocarditis (BCNE) is a diagnostic challenge, therefore our objective was to pinpoint high-risk cohorts for BCNE. Methods: The study included adult patients with definite endocarditis. Data were collected via the Infectious Diseases International Research Initiative (ID-IRI). The study analysing one of the largest case series ever reported was conducted across 41 centers in 13 countries. We analysed the database to determine the predictors of BCNE using univariate and logistic regression analyses. Results: Blood cultures were negative in 101 (11.65 %) of 867 patients. We disclosed that as patients age, the likelihood of a negative blood culture significantly decreases (OR 0.975, 95 % CI 0.963–0.987, p < 0.001). Additionally, factors such as rheumatic heart disease (OR 2.036, 95 % CI 0.970–4.276, p = 0.049), aortic stenosis (OR 3.066, 95 % CI 1.564–6.010, p = 0.001), mitral regurgitation (OR 1.693, 95 % CI 1.012–2.833, p = 0.045), and prosthetic valves (OR 2.539, 95 % CI 1.599–4.031, p < 0.001) are associated with higher likelihoods of negative blood cultures. Our model can predict whether a patient falls into the culture-negative or culture-positive groups with a threshold of 0.104 (AUC±SE = 0.707 ± 0.027). The final model demonstrates a sensitivity of 70.3 % and a specificity of 57.0 %. Conclusion: Caution should be exercised when diagnosing endocarditis in patients with concurrent cardiac disorders, particularly in younger cases
Stiffness of sands through a laboratory test database
Deformations of sandy soils around geotechnical structures generally involve strains in the range small (0·01%) to medium (0·5%). In this strain range the soil exhibits non-linear stress-strain behaviour, which should be incorporated in any deformation analysis. In order to capture the possible variability in the non-linear behaviour of various sands, a database was constructed including the secant shear modulus degradation curves of 454 tests from the literature. By obtaining a unique S-shaped curve of shear modulus degradation, a modified hyperbolic relationship was fitted. The three curve-fitting parameters are: an elastic threshold strain γe, up to which the elastic shear modulus is effectively constant at G0; a reference strain γr, defined as the shear strain at which the secant modulus has reduced to 0·5G0; and a curvature parameter a, which controls the rate of modulus reduction. The two characteristic strains γe and γr were found to vary with sand type (i.e. uniformity coefficient), soil state (i.e. void ratio, relative density) and mean effective stress. The new empirical expression for shear modulus reduction G/G0 is shown to make predictions that are accurate within a factor of 1·13 for one standard deviation of random error, as determined from 3860 data points. The initial elastic shear modulus, G0, should always be measured if possible, but a new empirical relation is shown to provide estimates within a factor of 1·6 for one standard deviation of random error, as determined from 379 tests. The new expressions for non-linear deformation are easy to apply in practice, and should be useful in the analysis of geotechnical structures under static loading
Soil behaviour through field instrumentation
An improved version of the observational method is developed and proposed. The method uses field measurements as the direct inputs to the framework of the constitutive behaviour and analyses the behaviour synchronously as measurements are recorded. The method is developed for the specific case of embankments on soft clays, and its effectiveness is tested on a well-documented case history. The framework provided for the application of the method is basically the idealized stress space of the critical state theory, but the constitutive anisotropic elastoplastic soil model is added to this framework to analyse the behaviour and provide direct links between measurements and design parameters. Strain-rate dependency of the soft soils is also incorporated in the interpretation of the behaviour. To consider the variation in the behaviour of foundation soils, a zonation system is applied. Stress axis rotation is considered for active and passive regions effectively. Substantial savings can be achieved using the method in terms of time and cost, and the method is reliable. In addition, such an application improves the understanding of the real behaviour of soils
Stiffness of sands through a laboratory test database. Geotechnique
Deformations of sandy soils around geotechnical structures generally involve strains in the range small (0 . 01%) to medium (0 . 5%). In this strain range the soil exhibits non-linear stress-strain behaviour, which should be incorporated in any deformation analysis. In order to capture the possible variability in the non-linear behaviour of various sands, a database was constructed including the secant shear modulus degradation curves of 454 tests from the literature. By obtaining a unique S-shaped curve of shear modulus degradation, a modified hyperbolic relationship was fitted. The three curve-fitting parameters are: an elastic threshold strain ª e , up to which the elastic shear modulus is effectively constant at G 0 ; a reference strain ª r , defined as the shear strain at which the secant modulus has reduced to 0 . 5G 0 ; and a curvature parameter a, which controls the rate of modulus reduction. The two characteristic strains ª e and ª r were found to vary with sand type (i.e. uniformity coefficient), soil state (i.e. void ratio, relative density) and mean effective stress. The new empirical expression for shear modulus reduction G/G 0 is shown to make predictions that are accurate within a factor of 1 . 13 for one standard deviation of random error, as determined from 3860 data points. The initial elastic shear modulus, G 0 , should always be measured if possible, but a new empirical relation is shown to provide estimates within a factor of 1 . 6 for one standard deviation of random error, as determined from 379 tests. The new expressions for non-linear deformation are easy to apply in practice, and should be useful in the analysis of geotechnical structures under static loading
- …