23 research outputs found
Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae : effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation
The lactose in cheese whey is an interesting
substrate for the production of bulk commodities such as
bio-ethanol, due to the large amounts of whey surplus
generated globally. In this work, we studied the performance
of a recombinant Saccharomyces cerevisiae strain
expressing the lactose permease and intracellular ß-galactosidase
from Kluyveromyces lactis in fermentations of
deproteinized concentrated cheese whey powder solutions.
Supplementation with 10 g/l of corn steep liquor significantly
enhanced whey fermentation, resulting in the production
of 7.4% (v/v) ethanol from 150 g/l initial lactose in
shake-flask fermentations, with a corresponding productivity
of 1.2 g/l/h. The flocculation capacity of the yeast
strain enabled stable operation of a repeated-batch process
in a 5.5-l air-lift bioreactor, with simple biomass recycling
by sedimentation of the yeast flocs. During five consecutive
batches, the average ethanol productivity was 0.65 g/l/h
and ethanol accumulated up to 8% (v/v) with lactose-toethanol
conversion yields over 80% of theoretical. Yeast
viability (>97%) and plasmid retention (>84%) remained
high throughout the operation, demonstrating the stability
and robustness of the strain. In addition, the easy and
inexpensive recycle of the yeast biomass for repeated utilization
makes this process economically attractive for
industrial implementation.Fundação para a Ciência e a Tecnologia (FCT)LACTOGAL-Produtos Alimentares S.A.Companhia Portuguesa de Amidos, S.A
Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production
Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H2/mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.Accepted versio