7 research outputs found

    Ocjena apsorpcije, djelotvornosti protiv bakterije Escherichia coli i citotoksičnosti krutih lipidnih nanočestica s moksifloksacinom

    Get PDF
    Moxifloxacin (MOX) is an important antibiotic commonly used in the treatment of recurrent Escherichia coli (E. coli) infections. The aim of this study was to investigate its antibacterial efficiency when used with solid lipid nanoparticles (SNLs) and nanostructured lipid carriers (NLCs) as delivery vehicles. For this purpose we designed two SLNs (SLN1 and SLN2) and two NLCs (NLC1 and NLC2) of different characteristics (particle size, size distribution, zeta potential, and encapsulation efficiency) and loaded them with MOX to determine its release, antibacterial activity against E. coli, and their cytotoxicity to the RAW 264.7 monocyte/macrophage-like cell line in vitro. With bacterial uptake of 57.29 %, SLN1 turned out to be significantly more effective than MOX given as standard solution, whereas SLN2, NLC1, and NLC2 formulations with respective bacterial uptakes of 50.74 %, 39.26 %, and 32.79 %, showed similar activity to standard MOX. Cytotoxicity testing did not reveal significant toxicity of nanoparticles, whether MOX-free or MOX-loaded, against RAW 264.7 cells. Our findings may show the way for a development of effective lipid carriers that reduce side effects and increase antibacterial treatment efficacy in view of the growing antibiotic resistance.Moksifloksacin je važan antibiotik koji se često rabi za liječenje rekurentne infekcije bakterijom Escherichia coli (E. coli). Cilj je ovog istraživanja bio ocijeniti njegovu djelotvornost u formulaciji s krutim lipidnim nanočesticama (engl. solid lipid nanoparticles, krat. SNL) i nanostrukturiranim lipidnim nosačima (engl. nanostructured lipid carriers, krat. NLC) kao njegovim vehikulima. U tu smo svrhu osmislili dva SLN-a (SLN1 I SLN2) te dva NLC-a (NLC1 i NLC2) različitih svojstava (veličine čestice, raspodjele veličina, zeta potencijala i sposobnosti enkapsulacije) te ih obogatili moksifloksacinom kako bismo utvrdili njegovo otpuštanje, djelovanje protiv E. coli i citotoksičnost za makrofagnu staničnu liniju RAW 264.7 in vitro. S bakterijskom apsorpcijom od 57,29 %, SLN1 se pokazao značajno djelotvornijim vehikulom moksifloksacina od njegove standardne formulacije (otopine), a formulacije s SLN2, NLC1 odnosno NLC2 s odgovarajućim apsorpcijama od 50,74 %, 39,26 % odnosno 32,79 % iskazale su djelotvornost sličnu onoj standardnog antibiotika. Test citotoksičnosti nije pokazao značajnu toksičnost nanočestica bez obzira na to jesu li sadržavale moksifloksacin ili nisu. Naši rezultati upućuju na mogući smjer razvoja djelotvornih lipidnih nosača kojima bi se mogle smanjiti nuspojave i povećati antibakterijska djelotvornost liječenja s obzirom na sve veću bakterijsku rezistentnost

    Evaluation of a novel oxiconazole nitrate formulation: The thermosensitive gel

    No full text
    Superficial fungal infections caused by Candida species are common skin diseases. Therefore, this study aimed to develop a new formulation containing oxiconazole nitrate, which is an azole group derivative for antifungal treatment, as a thermosensitive gel since there has been no literature study until now.MIC value of the novel thermosensitive formulation against three Candida species was calculated and time-dependent antifungal activity analysis was performed. Viscosity, transition temperature Tsol-gel (°C) and gelation time of the thermosensitive gel formulation were also determined in the viscometer. The measurements performed on the tensilometer device were analyzed for adhesion hardness and elongation percentages of the formulation. In the FT-IR spectrometer, the spectrum of solution and gel state was compared between 650 and 4000 cm−1 and it was found that there is no difference between them.It was found that the temperature is reversible on the formulation and did not cause any disruption of its components. Characterization parameters of the thermosensitive gel formulation containing oxiconazole nitrate and time-dependent activity against Candida species was observed to be the same as those of the solution containing only oxiconazole nitrate. MIC, MFC and time-dependent antifungal analysis did not show any particular difference between formulation and oxiconazole nitrate itself. Thermosensitive gel formulation containing oxiconazole nitrate was found to be effective on superficial fungal infections. We believe it is also appropriate for in vivo usage, but it is necessary to perform animal and human research. It is also needed to evaluate the formulation against other etiologic agents of superficial fungal infections. Keywords: Oxiconazole nitrate, Thermosensitive gels, Poloxamer 407, Candida, Antifungal activit

    The Effect of α-Tocopherol and Selenium on Human Gingival Fibroblasts and Periodontal Ligament Fibroblasts In Vitro

    No full text
    WOS: 000333750800019PubMed ID: 23805812Background: The aim of the present study is to evaluate the effect of alpha-tocopherol and selenium on gingival fibroblasts (GFs) and periodontal ligament fibroblasts (PDLFs) in terms of proliferation, basic fibroblast growth factor (bFGF) release, collagen type I synthesis, and wound healing. Methods: Primary cultures of human GFs and PDLFs were isolated. Four test groups and a control group free of medication was formed. In group E, 60 mu M alpha-tocopherol was used, and in groups ES1, ES2, and ES3, the combination of 60 mM alpha-tocopherol with 5 x 10(-9) M, 10 x 10(-9) M, and 50 x 10(-9) M selenium was used, respectively. Viability, proliferation, bFGF, and collagen type I synthesis from both cell types were evaluated at 24, 48, and 72 hours, and healing was compared on a new wound-healing model at 12, 24, 36, 48, and 72 hours. Results: alpha-Tocopherol alone significantly increased the healing rate of PDLFs at 12 hours and increased bFGF and collagen type I release from GFs and PDLFs at 24, 48, and 72 hours. The alpha-tocopherol/selenium combination significantly enhanced the proliferation rate of both cells at 48 hours, decreased the proliferation of PDLFs at 72 hours, and increased the healing rate of GFs at 12 hours and PDLFs at 12 and 48 hours. bFGF and collagen type I synthesis was also increased in both cell types at 24, 48, and 72 hours by alpha-tocopherol/selenium combination. Conclusion: alpha-Tocopherol and alpha-tocopherol/selenium combination is able to accelerate the proliferation rate and wound-healing process and increase the synthesis of bFGF and collagen type I from both GFs and PDLFs
    corecore