1,490 research outputs found
Geometrical Constraints on the Cosmological Constant
The cosmological constant problem is examined under the assumption that the
extrinsic curvature of the space-time contributes to the vacuum. A compensation
mechanism based on a variable cosmological term is proposed. Under a suitable
hypothesis on the behavior of the extrinsic curvature, we find that an
initially large rolls down rapidly to zero during the early stages
of the universe. Using perturbation analysis, it is shown that such vacuum
behaves essentially as a spin-2 field which is independent of the metric.Comment: [email protected], 17 pages, Latex, 2 figures obtained by reques
Thermodynamics of Decaying Vacuum Cosmologies
The thermodynamic behavior of vacuum decaying cosmologies is investigated
within a manifestly covariant formulation. Such a process corresponds to a
continuous irreversible energy flow from the vacuum component to the created
matter constituents. It is shown that if the specific entropy per particle
remains constant during the process, the equilibrium relations are preserved.
In particular, if the vacuum decays into photons, the energy density and
average number density of photons scale with the temperature as and . The temperature law is determined and a generalized
Planckian type form of the spectrum, which is preserved in the course of the
evolution, is also proposed. Some consequences of these results for decaying
vacuum FRW type cosmologies as well as for models with ``adiabatic'' photon
creation are discussed.Comment: 21 pages, uses LATE
Black Hole Formation with an Interacting Vacuum Energy Density
We discuss the gravitational collapse of a spherically symmetric massive core
of a star in which the fluid component is interacting with a growing vacuum
energy density. The influence of the variable vacuum in the collapsing core is
quantified by a phenomenological \beta-parameter as predicted by dimensional
arguments and the renormalization group approach. For all reasonable values of
this free parameter, we find that the vacuum energy density increases the
collapsing time but it cannot prevent the formation of a singular point.
However, the nature of the singularity depends on the values of \beta. In the
radiation case, a trapped surface is formed for \beta<1/2 whereas for
\beta>1/2, a naked singularity is developed. In general, the critical value is
\beta=1-2/3(1+\omega), where the \omega-parameter describes the equation of
state of the fluid component.Comment: 9 pages, 8 figure
Exact Black Hole and Cosmological Solutions in a Two-Dimensional Dilaton-Spectator Theory of Gravity
Exact black hole and cosmological solutions are obtained for a special
two-dimensional dilaton-spectator () theory of gravity. We show how
in this context any desired spacetime behaviour can be determined by an
appropriate choice of a dilaton potential function and a ``coupling
function'' in the action. We illustrate several black hole solutions
as examples. In particular, asymptotically flat double- and multiple- horizon
black hole solutions are obtained. One solution bears an interesting
resemblance to the string-theoretic black hole and contains the same
thermodynamic properties; another resembles the Reissner-Nordstrom
solution. We find two characteristic features of all the black hole solutions.
First the coupling constants in must be set equal to constants of
integration (typically the mass). Second, the spectator field and its
derivative both diverge at any event horizon. A test particle with
``spectator charge" ({\it i.e.} one coupled either to or ),
will therefore encounter an infinite tidal force at the horizon or an
``infinite potential barrier'' located outside the horizon respectively. We
also compute the Hawking temperature and entropy for our solutions. In
cosmology, two non-singular solutions which resemble two exact solutions
in string-motivated cosmology are obtained. In addition, we construct a
singular model which describes the standard non-inflationary big bang
cosmology (). Motivated by the
similaritiesbetween and gravitational field equations in
cosmology, we briefly discuss a special dilaton-spectator action
constructed from the bosonic part of the low energy heterotic string action andComment: 34 pgs. Plain Tex, revised version contains some clarifying comments
concerning the relationship between the constants of integration and the
coupling constants
Recommended from our members
Optical indices of lithiated electrochromic oxides
Optical indices have been determined for thin films of several electrochromic oxide materials. One of the most important materials in electrochromic devices, WO{sub 3}, was thoroughly characterized for a range of electrochromic states by sequential injection of Li ions. Another promising material, Li{sub 0.5}Ni{sub 0.5}O, was also studied in detail. Less detailed results are presented for three other common lithium-intercalating electrochromic electrode materials: V{sub 2}O{sub 5}, LiCoO{sub 2}, and CeO{sub 2}-TiO{sub 2}. The films were grown by sputtering, pulsed laser deposition (PLD) and sol-gel techniques. Measurements were made using a combination of variable-angle spectroscopy ellipsometry and spectroradiometry. The optical constants were then extracted using physical and spectral models appropriate to each material. Optical indices of the underlying transparent conductors, determined in separate studies, were fixed in the models of this work. The optical models frequently agree well with independent physical measurements of film structure, particularly surface roughness by atomic force microscopy. Inhomogeneity due to surface roughness, gradient composition, and phase separation are common in both the transparent conductors and electrochromics, resulting sometimes in particularly complex models for these materials. Complete sets of data are presented over the entire solar spectrum for a range of colored states. This data is suitable for prediction of additional optical properties such as oblique transmittance and design of complete electrochromic devices
The Operator Product Expansion of the Lowest Higher Spin Current at Finite N
For the N=2 Kazama-Suzuki(KS) model on CP^3, the lowest higher spin current
with spins (2, 5/2, 5/2,3) is obtained from the generalized GKO coset
construction. By computing the operator product expansion of this current and
itself, the next higher spin current with spins (3, 7/2, 7/2, 4) is also
derived. This is a realization of the N=2 W_{N+1} algebra with N=3 in the
supersymmetric WZW model. By incorporating the self-coupling constant of lowest
higher spin current which is known for the general (N,k), we present the
complete nonlinear operator product expansion of the lowest higher spin current
with spins (2, 5/2, 5/2, 3) in the N=2 KS model on CP^N space. This should
coincide with the asymptotic symmetry of the higher spin AdS_3 supergravity at
the quantum level. The large (N,k) 't Hooft limit and the corresponding
classical nonlinear algebra are also discussed.Comment: 62 pages; the footnotes added, some redundant appendices removed, the
presentations in the whole paper improved and to appear in JHE
Tunneling in Decaying Cosmologies and the Cosmological Constant Problem
The tunneling rate, with exact prefactor, is calculated to first order in
for an empty closed Friedmann-Robertson-Walker (FRW) universe with
decaying cosmological term ( is the scale factor and
is a parameter ). This model is equivalent to a cosmology
with the equation of state . The calculations are
performed by applying the dilute-instanton approximation on the corresponding
Duru-Kleinert path integral.
It is shown that the highest tunneling rate occurs for corresponding to
the cosmic string matter universe. The obtained most probable cosmological
term, like one obtained by Strominger, accounts for a possible solution to the
cosmological constant problem.Comment: 21 pages, REVTEX, The section 3 is considerably completed including
some physical mechanisms supporting the time variation of the cosmological
constant, added references for the section 3. Accepted to be published in
Phys. Rev.
Cholesterol efflux promoting function of high-density lipoproteins in calcific aortic valve stenosis
Background and aims: Cholesterol efflux capacity is a functional property of high-density lipoproteins (HDL) reflecting the efficiency of the atheroprotective reverse cholesterol transport process in humans. Its relationship with calcific aortic valve stenosis (CAVS) has not been fully assessed yet. Methods: We evaluated HDL-CEC in a patient population with varying degrees of aortic valvular calcific disease, assessed using echocardiography and cardiac computed tomography. Measurement of biomarkers that reflect osteogenic and tissue remodeling, along with dietary and gut microbiota-derived metabolites were performed. Results: Patients with moderate-severe CAVS had significantly lower HDL-CEC compared to both control and aortic sclerosis subjects (mean: 6.09%, 7.32% and 7.26%, respectively). HDL-CEC displayed negative correlations with peak aortic jet velocity and aortic valve calcium score, indexes of CAVS severity (ρ = -0.298, p = 0.002 and ρ = -0.358, p = 0.005, respectively). In multivariable regression model, HDL-CEC had independent association with aortic valve calcium score (B: -0.053, SE: 0.014, p < 0.001), GFR (B: -0.034, SE: 0.012, p = 0.007), as well as with levels of total cholesterol (B: 0.018, SE: 0.005, p = 0.002). Conclusion: These results indicate an impairment of HDL-CEC in moderate-severe CAVS and may contribute to identify potential novel targets for CAVS management
Another exact inflationary solution
A new closed-form inflationary solution is given for a hyperbolic interaction
potential. The method used to arrive at this solution is outlined as it appears
possible to generate additional sets of equations which satisfy the model. In
addition a new form of decaying cosmological constant is presented.Comment: 10 pages, 0 figure
- …