44 research outputs found

    On the Ring of Simultaneous Invariants for the Gleason–MacWilliams Group

    Get PDF
    AbstractWe construct a canonical generating set for the polynomial invariants of the simultaneous diagonal action (of arbitrary number of l factors) of the two-dimensional finite unitary reflection group G of order 192, which is called the group No. 9 in the list of Shephard and Todd, and is also called the Gleason–MacWilliams group. We find this canonical set in the vector space (⊗i=1lV)G, where V denotes the (dual of the) two-dimensional vector space on which the group G acts, by applying the techniques of Weyl (i.e., the polarization process of invariant theory) to the invariants C [ x, y ]G0of the two-dimensional group G0of order 48 which is the intersection of G and SL(2, C). It is shown that each element in this canonical set corresponds to an irreducible representation which appears in the decomposition of the action of the symmetric group Sl. That is, by letting the symmetric group Slacts on each element of the canonical generating set, we get an irreducible subspace on which the symmetric group Slacts irreducibly, and all these irreducible subspaces give the decomposition of the whole space (⊗i=1lV)G. This also makes it possible to find the generating set of the simultaneous diagonal action (of arbitrary l factors) of the group G. This canonical generating set is different from the homogeneous system of parameters of the simultaneous diagonal action of the group G. We can construct Jacobi forms (in the sense of Eichler and Zagier) in various ways from the invariants of the simultaneous diagonal action of the group G, and our canonical generating set is very fit and convenient for the purpose of the construction of Jacobi forms

    Identification and visualization of oxidized lipids in atherosclerotic plaques by microscopic imaging mass spectrometry-based metabolomics

    Get PDF
    Background and aimsDysregulated lipid metabolism has emerged as one of the major risk factors of atherosclerosis. Presently, there is a consensus that oxidized LDL (oxLDL) promotes development of atherosclerosis and downstream chronic inflammatory responses. Due to the dynamic metabolic disposition of lipoprotein, conventional approach to purify bioactive lipids for subsequent comprehensive analysis has proven to be inadequate for elucidation of the oxidized lipids species accountable for pathophysiology of atherosclerotic lesions. Herein, we aimed to utilize a novel mass microscopic imaging technology, coupled with mass spectrometry (MS) to characterize oxidized lipids in atherosclerotic lesions. MethodsWe attempted to use MALDI-TOF-MS and iMScope to identify selected oxidized lipid targets and visualize their respective localizations in study models of atherosclerosis. ResultsBased on the MS analysis, detection of 7-K under positive ionization through product ion peak at m/z 383 [M+H-H2O] indicated the distinctive presence of targeted lipid within Cu2+-oxLDL and Cu2+-oxLDL loaded macrophage-like J774A.1 cell, along with other cholesterol oxidation products. Moreover, the application of two-dimensional iMScope has successfully visualized the localization of lipids in aortic atherosclerotic plaques of the Watanabe heritable hyperlipidemic (WHHL) rabbit. Distinctive lipid distribution profiles were observed in atherosclerotic lesions of different sizes, especially the localizations of lysoPCs in atherosclerotic plaques. ConclusionsTaken together, we believe that both MALDI-TOF-MS and iMScope metabolomics technology may offer a novel proposition for future pathophysiological studies of lipid metabolism in atherosclerosis

    How to evaluate science problem solving in a computerized learning environment? Construction of an analyzing scheme

    Get PDF
    Περιέχει το πλήρες κείμενοThis paper describes the construction of a ‘computerized science problem solving’ scheme, which enables analysis and evaluation of the effectiveness of science problem-solving by junior high-school students working in a computerized learning environment. The scheme was based on observations of 187 students as they solved qualitative science problems taken from a specific computerized learning environment. Students were also interviewed before and after the problem solving. The scheme is presented on two levels. The large-scale comprises 11 main categories, each sub-divided into sub-categories to yield the detailed-level. The sub-categories were based on a repertoire of activities found in the observation protocols, and were approved by external judgement and a validation process. The detailed-level scheme enables evaluation and statistical analysis of the participants' problem-solving effectiveness, providing substantial evidence for the construct validity of the scheme, and demonstrating its potential as a valid analyzing and evaluative tool for computerized science problem solving

    The Function of β2-glycoprotein I in Angiogenesis and Its in Vivo Distribution in Tumor Xenografts

    Get PDF
    Intact β2-glycoprotein I (iβ2GPI) is a glycoprotein that regulates coagulation and fibrinolysis. Nicked β2GPI (nβ2GPI) possesses an angiogenic property at a relatively low concentration, and an antiangiogenic property at a high concentration. Here we investigated the functions of βi 2GPI and nβ2GPI in vascular endothelial growth factor (VEGF)-A-induced endothelial cell proliferation and tube formation. We used noninvasive PET imaging to analyze the in vivo distribution of intravenously injected β2GPI variants in tumor lesions in mice. iβ2GPI was incubated with plasmin to obtain nβ2GPI, and its N-terminal sequence was analyzed. nβ2GPI had at least one other cleavage site upstream of the β2GPIʼs domain V, whereas the former plasmin-cleavage site locates between K317 and T318. Both of intact and nicked β2GPI significantly inhibited the VEGF-A-induced cell proliferation and the tube formation of human umbilical vein endothelial cells (HUVECs). PET imaging visualized considerably distributed intensities of all tested β2GPI variants in tumor lesions of pancreatic tumor cell-xenografts. These results indicate that β2GPI may be physiologically and pathophysiologically important in the regulation of not only coagulation and fibrinolysis, but also angiogenesis

    A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): “Lactosome” Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy

    Get PDF
    “Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform

    Stretching positions for the coracohumeral ligament: Strain measurement during passive motion using fresh/frozen cadaver shoulders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contracture of the coracohumeral ligament is reported to restrict external rotation of the shoulder with arm at the side and restrict posterior-inferior shift of the humeral head. The contracture is supposed to restrict range of motion of the glenohumeral joint.</p> <p>Methods</p> <p>To obtain stretching position of the coracohumeral ligament, strain on the ligament was measured at the superficial fibers of the ligament using 9 fresh/frozen cadaver shoulders. By sequential measurement using a strain gauge, the ligament strain was measured from reference length (L0). Shoulder positions were determined using a 3 Space Tracker System. Through a combination of previously reported coracohumeral stretching positions and those observed in preliminary measurement, ligament strain were measured by passive external rotation from 10° internal rotation, by adding each 10° external rotation, to maximal external rotation.</p> <p>Results</p> <p>Stretching positions in which significantly larger strain were obtained compared to the L0 values were 0° elevation in scapula plane with 40°, 50° and maximum external rotation (5.68%, 7.2%, 7.87%), 30° extension with 50°, maximum external rotation (4.20%, 4.79%), and 30° extension + adduction with 30°, 40°, 50° and maximum external rotation (4.09%, 4.67%, 4.78%, 5.05%)(P < 0.05). No positive strain on the coracohumeral ligament was observed for the previously reported stretching positions; ie, 90° abduction with external rotation or flexion with external rotation.</p> <p>Conclusions</p> <p>Significant strain of the coracohumeral ligament will be achieved by passive external rotation at lower shoulder elevations, extension, and extension with adduction.</p

    Polymeric micelle of a3 b-type lactosome as a vehicle for targeting meningeal dissemination

    Get PDF
    Polymeric micelle of the A₃B-type lactosome comprising (poly(sarcosine))₃-b-poly(l-lactic acid) was labeled with ¹¹¹In. The ¹¹¹In-labeled A₃B-type lactosome was administered to the model mice bearing meningeal dissemination and bone metastasis at mandible. With single-photon emission computed tomography (SPECT) imaging, the meningeal dissemination was identified successfully by ¹¹¹In-labeled A₃B-type lactosome, which was superior to ²⁰¹TlCl in regard of the imaging contrast. The ¹¹¹In-labeled A₃B-type lactosome was also potential in imaging selectively of bone metastasis at mandible, whilst a nonspecific imaging of the whole bone was obtained by the SPECT imaging using ⁹⁹mTc-HMDP. The polymeric micelle of the A₃B-type lactosome was therefore found to be effective as a vehicle of ¹¹¹In to be targeted to meningeal dissemination and bone metastasis

    Enhanced cellular uptake of lactosomes using cell-penetrating peptides

    No full text
    Polymeric micelles that are composed of synthetic polymers are generally size controllable and can be easily modified for various applications. Lactosomes (A3B-type) are biodegradable polymeric micelles composed of an amphipathic polymer, including three poly(sarcosine) blocks and a poly(l-lactic acid) block. Lactosomes accumulate in tumors in vivo through the enhanced permeability and retention (EPR) effect, even on frequently administering them. However, lactosomes cannot be efficiently internalized by cells. To improve cellular uptake of lactosomes, cell-penetrating peptide (CPP)-modified lactosomes were prepared. Seven CPPs (including EB1 and Pep1) were used, and most of them improved the cellular uptake efficiency of lactosomes. In particular, EB1- and Pep1-modified lactosomes were efficiently internalized by cells. In addition, by using CPP-modified and photosensitizer-loaded lactosomes, we demonstrated the photoinduced killing of mammalian cells, including human cancer cells. Accumulation of the EB1-modified lactosomes in NCI-N87 tumors was shown by in vivo imaging. Thus, this study demonstrated that the CPP-modified lactosome is a promising drug carrier
    corecore