10 research outputs found
CD133+/CD44+prostate cancer stem cells exhibit embryo-like behavior patterns
Cancer stem cells (CSCs), which act as an important bridge between cancer formation and embryonic development, represent a small population associated with tumor initiation, drug resistance, metastasis and recurrence. CSCs have the ability to form spheroids in three-dimensional culture systems. Tumor spheroids derived from CSCs with symmetric and asymmetric division patterns were found to contain highly heterogeneous cell groups. The biological behavior patterns which some CSCs display serve as an important bridge between cancer formation and embryonic development. The cell population in the DU-145 prostate cancer cell line with surface markers CD133+/CD44+ was isolated by FACS. Prostate spheroids were formed by using agarose-coated plates. The morphological characteristics of the cell population within spheroid structure and the expression of Ki-67 and Caspase-3 were investigated by histochemical methods. In this study, we observed that CD133+/CD44+ prostate CSCs form different spheroid structures as well as normal spheroid structures: i) some spheroid structures formed with a highly transparent zone on the outer part of the spheroid, in addition to the normal spheroidal zones and ii) spheroidal structures obtained from prostate CD1334+/CD44+ CSCs that share the same microenvironment are hollow spheres similar to the blastula-like structure in the embryo. These spheroidal structures exhibiting embryo-like properties indicate that the expression of embryonic factors might be reiterated in CSCs. Further investigation of the formation mechanism of the transparent zone and the hollow sphere will shed light on the embryonic origin of prostate cancer and the design of new therapeutic strategies
The effect of extracellular matrix on the differentiation of mouse embryonic stem cells
Embryonic stem cells (ESCs) are promising research materials to investigate cell fate determination since they have the capability to differentiate. Stem cell differentiation has been extensively studied with various microenvironment mimicking structures to modify cellular dynamics associated with the cell-extracellular matrix (ECM) interactions and cell-cell communications. in the current study, our aim was to determine the effect of microenvironmental proteins with different concentrations on the capacity and differentiation capability of mouse ESCs (mESCs), combining the biochemical assays, imaging techniques, Fourier transform infrared (FTIR) spectroscopy, and unsupervised multivariate analysis. Based on our data, coating the surface of mESCs with Matrigel, used as an acellular matrix substrate, resulted in morphological and biochemical changes. mESCs exhibited alterations in their phenotype after growing on the Matrigel-coated surfaces, including their differentiation capacity, cell cycle phase pattern, membrane fluidity, and metabolic activities. in conclusion, mESCs can be stimulated physiologically, chemically, or mechanically to convert them a new phenotype. Thus, identification of ESCs' behavior in the acellular microenvironment could be vital to elucidate the mechanism of diseases. It might also be promising to control the cell fate in the field of tissue engineering
The effects of PIKfyve inhibitor YM201636 on claudins and malignancy potential of nonsmall cell cancer cells
Cetintas, Vildan Bozok/0000-0003-3915-6363; Duzgun, Zekeriya/0000-0001-6420-6292WOS:000617220100003PubMed: 33597819PIKfyve is an evolutionarily conserved lipid and protein kinase enzyme that has pleiotropic cellular functions. The aim of the present study was to investigate the effects of phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) inhibitor, YM201636, on nonsmall cell lung cancer (NSCLC) cells growth, tumorigenicity, and claudin (CLDN) expressions. Three NSCLC cell lines (Calu-1, H1299 and HCC827) were used to compare the effects of YM201636. Cytotoxic effects of YM201636 were analysed using XTT assay. Malignancy potential of cells assesses with wound healing and soft agar colony-forming assays. mRNA and protein expressions of claudins were analysed by qRT-PCR and immunofluorescence staining. Our results revealed that YM201636 inhibited the proliferation and malignancy potential of Calu-1, H1299, and HCC827 cells in a dose-dependent manner. After YM201636 treatment CLDN1, -3 and -5 expressions increased significantly in HCC827 cells. CLDN3 and -5 expressions also significantly increased in Calu-1 cell line. YM201636 treatment significantly reduced the CLDN1 and increased the CLDN5 expression in H1299 cells. Immunofluorescence staining of CLDN1, -3 and -5 proteins showed a significant increase after YM201636 treatment. Besides, YM201636 induced EGFR mRNA expression in all NSCLC cell lines. Our results have shown that YM201636 inhibits tumorigenicity of NSCLC cells. Furthermore, estimated glomerular filtration rate (EGFR) pathway is important signalling involved in the regulation of claudins. Understanding the mechanisms of PIKfyve inhibitors may improve cancer treatment particularly for EGFR overactivated NSCLC.Ege University Scientific Research Projects CoordinationEge University [18-TIP033]This study was supported by the Ege University Scientific Research Projects Coordination (grant number: 18-TIP033 to V.B.C.) and the master thesis project of E.D. at the Health Science Institute of Ege University, Izmir, Turkey
Stemness Potency and Structural Characteristics of Thyroid Cancer Cell Lines
Background: Thyroid cancer is the most frequent type of endocrine malignancy. Thyroid carcinomas are derived from the follicular epithelium and classified as papillary (PTC) (85%), follicular (FTC) (12%), and anaplastic (ATC) (<3%). Thyroid cancer could arise from thyroid cancer stem-like cells (CSCs). CSCs are cancer cells that feature stem-like properties. Kruppel-like factor (KLF4) and Stage-spesific embryonic antigen 1 (SSEA-1) are types of stem cell markers. Filamentous actin (F-actin) is an essential part of the cellular cytoskeleton. The purpose of this study was to evaluate the stem cell potency and the spatial distribution of the cytoskeletal element F-actin in PTC, FTC, and ATC cell lines. Materials and methods: Normal thyroid cell line (NTC) Nthy-ori-3–1, PTC cell line BCPAP, FTC cell line FTC-133 and ATC cell line 8505c were stained with SSEA-1 and KLF4 for stem cell potency and F-actin for cytoskeleton. The morphological properties of cells were assessed by a scanning electron microscope (SEM) and elemental ratios were compared with EDS. Results: PTCs had greater percentages of SSEA-1 and KLF4 protein intensity (0.32% and 0.49%, respectively) than NTCs. ATCs had a greater proportion of KLF4 expression (0.8%) than NTCs. NTCs and FTCs had increased F-actin intensity across the cell, but PTCs had the lowest among these four cell lines. NTCs and PTCs, as well as NTCs and FTCs, have statistically identical aspect ratios and round values. These values, however, were statistically different in ATCs. Conclusion: The study of stem cell markers and the cytoskeletal element F-actin in cancer and normal thyroid cell lines may assist in the identification of new therapeutic targets and contribute in the understanding of treatment resistance mechanisms. © 2022 Elsevier GmbHWe are grateful to Ahmet Topacoglu for his grammar support. All materials used in our study were purchased from public repositories. there isn't any unique or unaccessible material used. Material information mentioned in the M&M section. For additional questions please contact with our corresponding author. Not applicable
Autophagy and mTOR pathways in mouse embryonic stem cell, lung cancer and somatic fibroblast cell lines
WOS: 000483551100158PubMed ID: 31148273Embryonic developmental stages and regulations have always been one of the most intriguing aspects of science. Since the cancer stem cell discovery, striking for cancer development and recurrence, embryonic stem cells and control mechanisms, as well as cancer cells and cancer stem cell control mechanisms become important research materials. It is necessary to reveal the similarities and differences between somatic and cancer cells which are formed of embryonic stem cells divisions and determinations. For this purpose, mouse embryonic stem cells (mESCs), mouse skin fibroblast cells (MSFs) and mouse lung squamous cancer cells (SqLCCs) were grown in vitro and the differences between these three cell lines signalling regulations of mechanistic target of rapamycin (mTOR) and autophagic pathways were demonstrated by immunofluorescence and real-time polymerase chain reaction. Expressional differences were clearly shown between embryonic, cancer and somatic cells that mESCs displayed higher expressional level of Atg10, Hdac1 and Cln3 which are related with autophagic regulation and Hsp4, Prkca, Rhoa and ribosomal S6 genes related with mTOR activity. LC3 and mTOR protein levels were lower in mESCs than MSFs. Thus, the mechanisms of embryonic stem cell regulation results in the formation of somatic tissues whereas that these cells may be the causative agents of cancer in any deterioration.Ege UniversitesiEge University [16-TIP-045]; Ege University Scientific Research Projects coordination unitEge University [16-TIP-045
Anaplastik tiroid kanseri hücre hattının morfolojik analizi
Aim: Thyroid follicular cell derived cancers are classified into three groups such as papillary thyroid cancer (85%), follicular thyroid cancer (12%) and anaplastic (undifferentiated) thyroid cancer (ATC) (3%). ATCs have very rapid course, poor treatment outcomes and they are very aggressive. The aim of current study was to assess the analysis of the morphological differences of ATC cell line with the normal thyroid cell line (NTC).

Materials and Methods: NTH and ATC cells were examined with haematoxylin and eosin, the nucleus: cytoplasm (N:C) ratios were detected, and cell cycles were investigated. These cell lines were compared according to their N:C ratio and their abundance in cell cycle phases.

Results: The N:C ratio was higher in ATC than NTC. Both cell groups were mostly found in G0/G1 phase (68.4; 82.8) and have statistical difference in both G0/G1 and S phases.

Conclusion: The rapid course and the rarity of ATC are significant barriers for clinical trials. Cultured cell lines are very important to explore the behaviour in the biology of ATC cells (such as the cell cycle), to understand the course of the disease, and to find an effective target for treatment.</jats:p