7 research outputs found
Deep Spin-Glass Hysteresis Area Collapse and Scaling in the Ising Model
We investigate the dissipative loss in the Ising spin glass in three
dimensions through the scaling of the hysteresis area, for a maximum magnetic
field that is equal to the saturation field. We perform a systematic analysis
for the whole range of the bond randomness as a function of the sweep rate, by
means of frustration-preserving hard-spin mean field theory. Data collapse
within the entirety of the spin-glass phase driven adiabatically (i.e.,
infinitely-slow field variation) is found, revealing a power-law scaling of the
hysteresis area as a function of the antiferromagnetic bond fraction and the
temperature. Two dynamic regimes separated by a threshold frequency
characterize the dependence on the sweep rate of the oscillating field. For
, the hysteresis area is equal to its value in the adiabatic
limit , while for it increases with the
frequency through another randomness-dependent power law.Comment: 6 pages, 6 figure
Excitation Spectrum Gap and Spin-Wave Stiffness of XXZ Heisenberg Chains: Global Renormalization-Group Calculation
The anisotropic XXZ spin-1/2 Heisenberg chain is studied using
renormalization-group theory. The specific heats and nearest-neighbor spin-spin
correlations are calculated thoughout the entire temperature and anisotropy
ranges in both ferromagnetic and antiferromagnetic regions, obtaining a global
description and quantitative results. We obtain, for all anisotropies, the
antiferromagnetic spin-liquid spin-wave velocity and the Isinglike
ferromagnetic excitation spectrum gap, exhibiting the spin-wave to spinon
crossover. A number of characteristics of purely quantum nature are found: The
in-plane interaction s_i^x s_j^x + s_i^y s_j^y induces an antiferromagnetic
correlation in the out-of-plane s_i^z component, at higher temperatures in the
antiferromagnetic XXZ chain, dominantly at low temperatures in the
ferromagnetic XXZ chain, and, in-between, at all temperatures in the XY chain.
We find that the converse effect also occurs in the antiferromagnetic XXZ
chain: an antiferromagnetic s_i^z s_j^z interaction induces a correlation in
the s_i^xy component. As another purely quantum effect, (i) in the
antiferromagnet, the value of the specific heat peak is insensitive to
anisotropy and the temperature of the specific heat peak decreases from the
isotropic (Heisenberg) with introduction of either type (Ising or XY)
anisotropy; (ii) in complete contrast, in the ferromagnet, the value and
temperature of the specific heat peak increase with either type of anisotropy.Comment: New results added to text and figures. 12 pages, 18 figures, 3
tables. Published versio
Universal behavior of hydrogels confined to narrow capillaries
Flow of soft matter objects through one-dimensional environments is important in industrial, biological and biomedical systems. Establishing the underlying principles of the behavior of soft matter in confinement can shed light on its performance in many man-made and biological systems. Here, we report an experimental and theoretical study of translocation of micrometer-size hydrogels (microgels) through microfluidic channels with a diameter smaller than an unperturbed microgel size. For microgels with different dimensions and mechanical properties, under a range of applied pressures, we established the universal principles of microgel entrance and passage through microchannels with different geometries, as well as the reduction in microgel volume in confinement. We also show a non-monotonic change in the flow rate of liquid through the constrained microgel, governed by its progressive confinement. The experimental results were in agreement with the theory developed for non-linear biaxial deformation of unentangled polymer gels. Our work has implications for a broad range of phenomena, including occlusion of blood vessels by thrombi and needle-assisted hydrogel injection in tissue engineering
Phase Separation and Charge-Ordered Phases of the d = 3 Falicov-Kimball Model at T>0: Temperature-Density-Chemical Potential Global Phase Diagram from Renormalization-Group Theory
The global phase diagram of the spinless Falicov-Kimball model in d = 3
spatial dimensions is obtained by renormalization-group theory. This global
phase diagram exhibits five distinct phases. Four of these phases are
charge-ordered (CO) phases, in which the system forms two sublattices with
different electron densities. The CO phases occur at and near half filling of
the conduction electrons for the entire range of localized electron densities.
The phase boundaries are second order, except for the intermediate and large
interaction regimes, where a first-order phase boundary occurs in the central
region of the phase diagram, resulting in phase coexistence at and near half
filling of both localized and conduction electrons. These two-phase or
three-phase coexistence regions are between different charge-ordered phases,
between charge-ordered and disordered phases, and between dense and dilute
disordered phases. The second-order phase boundaries terminate on the
first-order phase transitions via critical endpoints and double critical
endpoints. The first-order phase boundary is delimited by critical points. The
cross-sections of the global phase diagram with respect to the chemical
potentials and densities of the localized and conduction electrons, at all
representative interactions strengths, hopping strengths, and temperatures, are
calculated and exhibit ten distinct topologies.Comment: Calculated density phase diagrams. Added discussions and references.
14 pages, 9 figures, 4 table