7 research outputs found

    Deep Spin-Glass Hysteresis Area Collapse and Scaling in the d=3d=3 ±J\pm J Ising Model

    Full text link
    We investigate the dissipative loss in the ±J\pm J Ising spin glass in three dimensions through the scaling of the hysteresis area, for a maximum magnetic field that is equal to the saturation field. We perform a systematic analysis for the whole range of the bond randomness as a function of the sweep rate, by means of frustration-preserving hard-spin mean field theory. Data collapse within the entirety of the spin-glass phase driven adiabatically (i.e., infinitely-slow field variation) is found, revealing a power-law scaling of the hysteresis area as a function of the antiferromagnetic bond fraction and the temperature. Two dynamic regimes separated by a threshold frequency ωc\omega_c characterize the dependence on the sweep rate of the oscillating field. For ω<ωc\omega < \omega_c, the hysteresis area is equal to its value in the adiabatic limit ω=0\omega = 0, while for ω>ωc\omega > \omega_c it increases with the frequency through another randomness-dependent power law.Comment: 6 pages, 6 figure

    Excitation Spectrum Gap and Spin-Wave Stiffness of XXZ Heisenberg Chains: Global Renormalization-Group Calculation

    Full text link
    The anisotropic XXZ spin-1/2 Heisenberg chain is studied using renormalization-group theory. The specific heats and nearest-neighbor spin-spin correlations are calculated thoughout the entire temperature and anisotropy ranges in both ferromagnetic and antiferromagnetic regions, obtaining a global description and quantitative results. We obtain, for all anisotropies, the antiferromagnetic spin-liquid spin-wave velocity and the Isinglike ferromagnetic excitation spectrum gap, exhibiting the spin-wave to spinon crossover. A number of characteristics of purely quantum nature are found: The in-plane interaction s_i^x s_j^x + s_i^y s_j^y induces an antiferromagnetic correlation in the out-of-plane s_i^z component, at higher temperatures in the antiferromagnetic XXZ chain, dominantly at low temperatures in the ferromagnetic XXZ chain, and, in-between, at all temperatures in the XY chain. We find that the converse effect also occurs in the antiferromagnetic XXZ chain: an antiferromagnetic s_i^z s_j^z interaction induces a correlation in the s_i^xy component. As another purely quantum effect, (i) in the antiferromagnet, the value of the specific heat peak is insensitive to anisotropy and the temperature of the specific heat peak decreases from the isotropic (Heisenberg) with introduction of either type (Ising or XY) anisotropy; (ii) in complete contrast, in the ferromagnet, the value and temperature of the specific heat peak increase with either type of anisotropy.Comment: New results added to text and figures. 12 pages, 18 figures, 3 tables. Published versio

    Universal behavior of hydrogels confined to narrow capillaries

    Get PDF
    Flow of soft matter objects through one-dimensional environments is important in industrial, biological and biomedical systems. Establishing the underlying principles of the behavior of soft matter in confinement can shed light on its performance in many man-made and biological systems. Here, we report an experimental and theoretical study of translocation of micrometer-size hydrogels (microgels) through microfluidic channels with a diameter smaller than an unperturbed microgel size. For microgels with different dimensions and mechanical properties, under a range of applied pressures, we established the universal principles of microgel entrance and passage through microchannels with different geometries, as well as the reduction in microgel volume in confinement. We also show a non-monotonic change in the flow rate of liquid through the constrained microgel, governed by its progressive confinement. The experimental results were in agreement with the theory developed for non-linear biaxial deformation of unentangled polymer gels. Our work has implications for a broad range of phenomena, including occlusion of blood vessels by thrombi and needle-assisted hydrogel injection in tissue engineering

    Phase Separation and Charge-Ordered Phases of the d = 3 Falicov-Kimball Model at T>0: Temperature-Density-Chemical Potential Global Phase Diagram from Renormalization-Group Theory

    Full text link
    The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The CO phases occur at and near half filling of the conduction electrons for the entire range of localized electron densities. The phase boundaries are second order, except for the intermediate and large interaction regimes, where a first-order phase boundary occurs in the central region of the phase diagram, resulting in phase coexistence at and near half filling of both localized and conduction electrons. These two-phase or three-phase coexistence regions are between different charge-ordered phases, between charge-ordered and disordered phases, and between dense and dilute disordered phases. The second-order phase boundaries terminate on the first-order phase transitions via critical endpoints and double critical endpoints. The first-order phase boundary is delimited by critical points. The cross-sections of the global phase diagram with respect to the chemical potentials and densities of the localized and conduction electrons, at all representative interactions strengths, hopping strengths, and temperatures, are calculated and exhibit ten distinct topologies.Comment: Calculated density phase diagrams. Added discussions and references. 14 pages, 9 figures, 4 table
    corecore