7,657 research outputs found
On the Z_p-ranks of tamely ramified Iwasawa modules
For a prime number p, we denote by K the cyclotomic Z_p-extension of a number
field k. For a finite set S of prime numbers, we consider the S-ramified
Iwasawa module which is the Galois group of the maximal abelian pro-p-extension
of K unramified outside S. This paper treats the case where S does not contain
p and k is the rational number field or an imaginary quadratic field. In this
case, we prove the explicit formulae for the free ranks of the S-ramified
Iwasawa modules as abelian pro-p groups, by using Brumer's p-adic version of
Baker's theorem on the linear independence of logarithms of algebraic numbers
Improvement of the hot QCD pressure by the minimal sensitivity criterion
The principles of minimal sensitivity (PMS) criterion is applied to the
perturbative free energy density, or pressure, of hot QCD, which include the
and part of the terms. Applications are made
separately to the short- and long-distance parts of the pressure. Comparison
with the lattice results, at low temperatures, shows that the resultant ``
optimal'' approximants are substantially improved when compared to the
results. In particular, for the realistic case of three quark
flavors, the `` optimal'' approximants are comparable with the lattice results.Comment: 14 pages, 9 figures, LaTe
Broken-symmetry-adapted Green function theory of condensed matter systems:towards a vector spin-density-functional theory
The group theory framework developed by Fukutome for a systematic analysis of
the various broken symmetry types of Hartree-Fock solutions exhibiting spin
structures is here extended to the general many body context using spinor-Green
function formalism for describing magnetic systems. Consequences of this theory
are discussed for examining the magnetism of itinerant electrons in nanometric
systems of current interest as well as bulk systems where a vector spin-density
form is required, by specializing our work to spin-density-functional
formalism. We also formulate the linear response theory for such a system and
compare and contrast them with the recent results obtained for localized
electron systems. The various phenomenological treatments of itinerant magnetic
systems are here unified in this group-theoretical description.Comment: 17 page
Generally covariant quantization and the Dirac field
Canonical Hamiltonian field theory in curved spacetime is formulated in a
manifestly covariant way. Second quantization is achieved invoking a
correspondence principle between the Poisson bracket of classical fields and
the commutator of the corresponding quantum operators. The Dirac theory is
investigated and it is shown that, in contrast to the case of bosonic fields,
in curved spacetime, the field momentum does not coincide with the generators
of spacetime translations. The reason is traced back to the presence of second
class constraints occurring in Dirac theory. Further, it is shown that the
modification of the Dirac Lagrangian by a surface term leads to a momentum
transfer between the Dirac field and the gravitational background field,
resulting in a theory that is free of constraints, but not manifestly
hermitian.Comment: final version, to appear in Annals Phy
Dispersion of resonant Raman scattering in ∏-conjugated polymers: role of the even parity excitons
Journal ArticleResonant Raman scattering dispersion of the most strongly coupled phonon frequencies with the excitation laser photon energy is measured in terms of a dispersion rate parameter D and quantified in a variety of p conjugated polymer films. D was found to be large in nonluminescent polymers and small in luminescent polymers. We show that D is determined by the dependence of the even parity excitons (Ag) on the polymer conjugation length, and this may serve as a useful spectroscopy for the 2Ag exciton in nonluminescent polymers where it is otherwise optically inactive
High-precision CTE measurement of hybrid C/SiC composite for cryogenic space telescopes
This paper presents highly precise measurements of thermal expansion of a
"hybrid" carbon-fiber reinforced silicon carbide composite,
HB-Cesic\textregistered - a trademark of ECM, in the temperature region of
\sim310-10K. Whilst C/SiC composites have been considered to be promising for
the mirrors and other structures of space-borne cryogenic telescopes, the
anisotropic thermal expansion has been a potential disadvantage of this
material. HB-Cesic\textregistered is a newly developed composite using a
mixture of different types of chopped, short carbon-fiber, in which one of the
important aims of the development was to reduce the anisotropy. The
measurements indicate that the anisotropy was much reduced down to 4% as a
result of hybridization. The thermal expansion data obtained are presented as
functions of temperature using eighth-order polynomials separately for the
horizontal (XY-) and vertical (Z-) directions of the fabrication process. The
average CTEs and their dispersion (1{\sigma}) in the range 293-10K derived from
the data for the XY- and Z-directions were 0.8050.003\times10
K and 0.837\pm0.001\times10 K, respectively. The absolute
accuracy and the reproducibility of the present measurements are suggested to
be better than 0.01\times10 K and 0.001\times(10)^{-6} K^{-1},
respectively. The residual anisotropy of the thermal expansion was consistent
with our previous speculation regarding carbon-fiber, in which the residual
anisotropy tended to lie mainly in the horizontal plane.Comment: Accepted by Cryogeincs. 12 pages, 3 figures, 1 tabll
New Matsushiro underground cosmic ray station (220 M.W.E. in depth)
A new underground cosmic ray station has been opened at Matsushiro, Japan, and a multidirectional (17 directional channels) muon telescope has been installed at an effective vertical depth of 220 m.w.e. The counting rates are; 8.7 x 10,000/hr for the wide vertical component and 2.0 x 10,000/hr for the vertical component. Continuous observation has been performed since March 22,1984. Some details of the telescope and preliminary analyzed results of the data are presented
Smectic layer rotation by dc field in ferroelectric liquid crystal
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in K. Nakayama, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 70, 2117 (1997) and may be found at https://doi.org/10.1063/1.118966
- …