11 research outputs found
Multihop Diversity in Wideband OFDM Systems: The Impact of Spatial Reuse and Frequency Selectivity
The goal of this paper is to establish which practical routing schemes for
wireless networks are most suitable for wideband systems in the power-limited
regime, which is, for example, a practically relevant mode of operation for the
analysis of ultrawideband (UWB) mesh networks. For this purpose, we study the
tradeoff between energy efficiency and spectral efficiency (known as the
power-bandwidth tradeoff) in a wideband linear multihop network in which
transmissions employ orthogonal frequency-division multiplexing (OFDM)
modulation and are affected by quasi-static, frequency-selective fading.
Considering open-loop (fixed-rate) and closed-loop (rate-adaptive) multihop
relaying techniques, we characterize the impact of routing with spatial reuse
on the statistical properties of the end-to-end conditional mutual information
(conditioned on the specific values of the channel fading parameters and
therefore treated as a random variable) and on the energy and spectral
efficiency measures of the wideband regime. Our analysis particularly deals
with the convergence of these end-to-end performance measures in the case of
large number of hops, i.e., the phenomenon first observed in \cite{Oyman06b}
and named as ``multihop diversity''. Our results demonstrate the realizability
of the multihop diversity advantages in the case of routing with spatial reuse
for wideband OFDM systems under wireless channel effects such as path-loss and
quasi-static frequency-selective multipath fading.Comment: 6 pages, to be published in Proc. 2008 IEEE International Symposium
on Spread Spectrum Techniques and Applications (IEEE ISSSTA'08), Bologna,
Ital
Collaborative Broadcast in O(log log n) Rounds
We consider the multihop broadcasting problem for nodes placed uniformly
at random in a disk and investigate the number of hops required to transmit a
signal from the central node to all other nodes under three communication
models: Unit-Disk-Graph (UDG), Signal-to-Noise-Ratio (SNR), and the wave
superposition model of multiple input/multiple output (MIMO). In the MIMO
model, informed nodes cooperate to produce a stronger superposed signal. We do
not consider the problem of transmitting a full message nor do we consider
interference. In each round, the informed senders try to deliver to other nodes
the required signal strength such that the received signal can be distinguished
from the noise. We assume sufficiently high node density . In the unit-disk graph model, broadcasting needs
rounds. In the other models, we use an Expanding Disk Broadcasting Algorithm,
where in a round only triggered nodes within a certain distance from the
initiator node contribute to the broadcasting operation. This algorithm
achieves a broadcast in only rounds in the
SNR-model. Adapted to the MIMO model, it broadcasts within rounds. All bounds are asymptotically tight and hold with high
probability, i.e. .Comment: extended abstract accepted for ALGOSENSORS 201