3,857 research outputs found
The role of vibrationally excited nitrogen and oxygen in the ionosphere over Millstone Hill during 16-23 March, 1990
International audienceWe present a comparison of the observed behavior of the F region ionosphere over Millstone Hill during the geomagnetically quiet and storm period on 16-23 March, 1990, with numerical model calculations from the time-dependent mathematical model of the Earth's ionosphere and plasmasphere. The effects of vibrationally excited N2(v) and O2(v) on the electron density and temperature are studied using the N2(v) and O2(v) Boltzmann and non-Boltzmann distribution assumptions. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at vibrational levels v = 1 and 2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The N2(v) and O2(v) non-Boltzmann distribution assumption leads to the decrease of the calculated daytime NmF2 up to a factor of 1.44 (maximum value) in comparison with the N2(v) and O2(v) Boltzmann distribution assumption. The resulting effects of N2(v > 0) and O2(v > 0) on the NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 2.8 (maximum value) for Boltzmann populations of N2(v) and O2(v) and up to a factor of 3.5 (maximum value) for non-Boltzmann populations of N2(v) and O2(v) . This decrease in electron density results in the increase of the calculated daytime electron temperature up to about 1040-1410 K (maximum value) at the F2 peak altitude giving closer agreement between the measured and modeled electron temperatures. Both the daytime and nighttime densities are not reproduced by the model without N2(v > 0) and O2(v > 0) , and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement. The effects of vibrationally excited O2 and N2 on the electron density and temperature are most pronounced during daytime
Comparison of the measured and modelled electron densities and temperatures in the ionosphere and plasmasphere during 20-30 January, 1993
International audienceWe present a comparison of the electron density and temperature behaviour in the ionosphere and plasmasphere measured by the Millstone Hill incoherent-scatter radar and the instruments on board of the EXOS-D satellite with numerical model calculations from a time-dependent mathematical model of the Earth's ionosphere and plasmasphere during the geomagnetically quiet and storm period on 20?30 January, 1993. We have evaluated the value of the additional heating rate that should be added to the normal photoelectron heating in the electron energy equation in the daytime plasmasphere region above 5000 km along the magnetic field line to explain the high electron temperature measured by the instruments on board of the EXOS-D satellite within the Millstone Hill magnetic field flux tube in the Northern Hemisphere. The additional heating brings the measured and modelled electron temperatures into agreement in the plasmasphere and into very large disagreement in the ionosphere if the classical electron heat flux along magnetic field line is used in the model. A new approach, based on a new effective electron thermal conductivity coefficient along the magnetic field line, is presented to model the electron temperature in the ionosphere and plasmasphere. This new approach leads to a heat flux which is less than that given by the classical Spitzer-Harm theory. The evaluated additional heating of electrons in the plasmasphere and the decrease of the thermal conductivity in the topside ionosphere and the greater part of the plasmasphere found for the first time here allow the model to accurately reproduce the electron temperatures observed by the instruments on board the EXOS-D satellite in the plasmasphere and the Millstone Hill incoherent-scatter radar in the ionosphere. The effects of the daytime additional plasmaspheric heating of electrons on the electron temperature and density are small at the F-region altitudes if the modified electron heat flux is used. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at the first vibrational levels of N2 and O2 and the second level of O2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The resulting effect of N2(v > 0) and O2(v > 0) on NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 1.5. The modelled electron temperature is very sensitive to the electron density, and this decrease in electron density results in the increase of the calculated daytime electron temperature up to about 580 K at the F2 peak altitude giving closer agreement between the measured and modelled electron temperatures. Both the daytime and night-time densities are not reproduced by the model without N2(v > 0) and O2(v > 0), and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement.Key words: Ionosphere (ionospheric disturbances; ionosphere-magnetosphere interactions; plasma temperature and density) <p style="line-height: 20px;"
Yearly variations in the low-latitude topside ionosphere
International audienceObservations made by the Hinotori satellite have been analysed to determine the yearly variations of the electron density and electron temperature in the low-latitude topside ionosphere. The observations reveal the existence of an equinoctial asymmetry in the topside electron density at low latitudes, i.e. the density is higher at one equinox than at the other. The asymmetry is hemisphere-dependent with the higher electron density occurring at the March equinox in the Northern Hemisphere and at the September equinox in the Southern Hemisphere. The asymmetry becomes stronger with increasing latitude in both hemispheres. The behaviour of the asymmetry has no significant longitudinal and magnetic activity variations. A mechanism for the equinoctial asymmetry has been investigated using CTIP (coupled thermosphere ionosphere plasmasphere model). The model results reproduce the observed equinoctial asymmetry and suggest that the asymmetry is caused by the north-south imbalance of the thermosphere and ionosphere at the equinoxes due to the slow response of the thermosphere arising from the effects of the global thermospheric circulation. The observations also show that the relationship between the electron density and electron temperature is different for daytime and nighttime. During daytime the yearly variation of the electron temperature has negative correlation with the electron density, except at magnetic latitudes lower than 10°. At night, the correlation is positive
Numerical simulation of 3-D flow around sounding rocket in the lower thermosphere
International audienceNumerical simulations using the Direct Simulation Monte Carlo (DSMC) method are known to be useful for analyses of aerodynamic effects on in-situ rocket measurements in the lower thermosphere, but the DSMC analysis of a spin modulation caused by an asymmetric flow around the rocket spin axis has been restricted to the two-dimensional and axially symmetric simulations in actual sounding rocket experiments. This study provides a quantitative analysis of the spin modulation using a three-dimensional (3-D) simulation of the asymmetric flow with the DSMC method. Clear spin modulations in the lower thermospheric N2 density measurement by a rocket-borne instrument are simulated using the rocket attitude and velocity, the simplified payload structure, and the approximated atmospheric conditions. Comparison between the observed and simulated spin modulations show a very good agreement within 5% at around 100km. The results of the simulation are used to correct the spin modulations and derive the absolute densities in the background atmosphere
SHG microscopic observations of polar state in Li-doped KTaO3 under electric field
Incipient ferroelectric KTaO3 with off-center Li impurity of the critical
concentration of 2.8 mol% was investigated in order to clarify the dipole glass
state under electric field. Using optical second-harmonic generation (SHG)
microscope, we observed a marked history dependence of SHG intensity through
zero-field cooling (ZFC), zero-field heating (ZFH), field heating after ZFC
(FH/ZFC) and FH after field cooling (FH/FC). These show different paths with
respect to temperature: In the ZFC/ZFH process, weak SHG was observed at low
temperature, while in the FH/ZFC process, relatively high SHG appears in a
limited temperature range below TF depending on the field strength, and in the
FC and FH/FC processes, the SHG exhibits ferroelectric-like temperature
dependence: it appears at the freezing temperature of 50K, increases with
decreasing temperature and has a tendency of saturation. These experimental
results strongly suggest that dipole glass state or polar nano-clusters which
gradually freezes with decreasing temperature is transformed into
semi-macroscopic polar state under the electric field. However at sufficiently
low temperature, the freezing is so strong that the electric field cannot
enlarge the polar clusters. These experimental results show that the polar
nano-cluster model similar to relaxors would be more relevant in KTaO3 doped
with the critical concentration of Li. Further experiments on the anisotropy of
SHG determine that the average symmetry of the field-induced polar phase is
tetragonal 4mm or 4, which is also confirmed by the X-ray diffraction
measurement.Comment: 26 pages, 8 figures, 1 tabl
Subdiffusive axial transport of granular materials in a long drum mixer
Granular mixtures rapidly segregate radially by size when tumbled in a
partially filled horizontal drum. The smaller component moves toward the axis
of rotation and forms a buried core, which then splits into axial bands. Models
have generally assumed that the axial segregation is opposed by diffusion.
Using narrow pulses of the smaller component as initial conditions, we have
characterized axial transport in the core. We find that the axial advance of
the segregated core is well described by a self-similar concentration profile
whose width scales as , with . Thus, the
process is subdiffusive rather than diffusive as previously assumed. We find
that is nearly independent of the grain type and drum rotation rate
within the smoothly streaming regime. We compare our results to two
one-dimensional PDE models which contain self-similarity and subdiffusion; a
linear fractional diffusion model and the nonlinear porous medium equation.Comment: 4 pages, 4 figures, 1 table. Submitted to Phys Rev Lett. For more
info, see http://www.physics.utoronto.ca/nonlinear
- …