44 research outputs found

    Deep Roto-Translation Scattering for Object Classification

    Full text link
    Dictionary learning algorithms or supervised deep convolution networks have considerably improved the efficiency of predefined feature representations such as SIFT. We introduce a deep scattering convolution network, with predefined wavelet filters over spatial and angular variables. This representation brings an important improvement to results previously obtained with predefined features over object image databases such as Caltech and CIFAR. The resulting accuracy is comparable to results obtained with unsupervised deep learning and dictionary based representations. This shows that refining image representations by using geometric priors is a promising direction to improve image classification and its understanding.Comment: 9 pages, 3 figures, CVPR 2015 pape

    Cyclic Data Parallelism for Efficient Parallelism of Deep Neural Networks

    Full text link
    Training large deep learning models requires parallelization techniques to scale. In existing methods such as Data Parallelism or ZeRO-DP, micro-batches of data are processed in parallel, which creates two drawbacks: the total memory required to store the model's activations peaks at the end of the forward pass, and gradients must be simultaneously averaged at the end of the backpropagation step. We propose Cyclic Data Parallelism, a novel paradigm shifting the execution of the micro-batches from simultaneous to sequential, with a uniform delay. At the cost of a slight gradient delay, the total memory taken by activations is constant, and the gradient communications are balanced during the training step. With Model Parallelism, our technique reduces the number of GPUs needed, by sharing GPUs across micro-batches. Within the ZeRO-DP framework, our technique allows communication of the model states with point-to-point operations rather than a collective broadcast operation. We illustrate the strength of our approach on the CIFAR-10 and ImageNet datasets

    DADAO: Decoupled Accelerated Decentralized Asynchronous Optimization

    Full text link
    This work introduces DADAO: the first decentralized, accelerated, asynchronous, primal, first-order algorithm to minimize a sum of LL-smooth and μ\mu-strongly convex functions distributed over a given network of size nn. Our key insight is based on modeling the local gradient updates and gossip communication procedures with separate independent Poisson Point Processes. This allows us to decouple the computation and communication steps, which can be run in parallel, while making the whole approach completely asynchronous, leading to communication acceleration compared to synchronous approaches. Our new method employs primal gradients and does not use a multi-consensus inner loop nor other ad-hoc mechanisms such as Error Feedback, Gradient Tracking, or a Proximal operator. By relating the inverse of the smallest positive eigenvalue of the Laplacian matrix χ1\chi_1 and the maximal resistance χ2χ1\chi_2\leq \chi_1 of the graph to a sufficient minimal communication rate between the nodes of the network, we show that our algorithm requires O(nLμlog(1ϵ))\mathcal{O}(n\sqrt{\frac{L}{\mu}}\log(\frac{1}{\epsilon})) local gradients and only O(nχ1χ2Lμlog(1ϵ))\mathcal{O}(n\sqrt{\chi_1\chi_2}\sqrt{\frac{L}{\mu}}\log(\frac{1}{\epsilon})) communications to reach a precision ϵ\epsilon, up to logarithmic terms. Thus, we simultaneously obtain an accelerated rate for both computations and communications, leading to an improvement over state-of-the-art works, our simulations further validating the strength of our relatively unconstrained method. We also propose a SDP relaxation to find the optimal gossip rate of each edge minimizing the total number of communications for a given graph, resulting in faster convergence compared to standard approaches relying on uniform communication weights. Our source code is released on a public repository

    Why do tree-based models still outperform deep learning on tabular data?

    Full text link
    While deep learning has enabled tremendous progress on text and image datasets, its superiority on tabular data is not clear. We contribute extensive benchmarks of standard and novel deep learning methods as well as tree-based models such as XGBoost and Random Forests, across a large number of datasets and hyperparameter combinations. We define a standard set of 45 datasets from varied domains with clear characteristics of tabular data and a benchmarking methodology accounting for both fitting models and finding good hyperparameters. Results show that tree-based models remain state-of-the-art on medium-sized data (\sim10K samples) even without accounting for their superior speed. To understand this gap, we conduct an empirical investigation into the differing inductive biases of tree-based models and Neural Networks (NNs). This leads to a series of challenges which should guide researchers aiming to build tabular-specific NNs: 1. be robust to uninformative features, 2. preserve the orientation of the data, and 3. be able to easily learn irregular functions. To stimulate research on tabular architectures, we contribute a standard benchmark and raw data for baselines: every point of a 20 000 compute hours hyperparameter search for each learner

    Low-Rank Projections of GCNs Laplacian

    Full text link
    In this work, we study the behavior of standard models for community detection under spectral manipulations. Through various ablation experiments, we evaluate the impact of bandpass filtering on the performance of a GCN: we empirically show that most of the necessary and used information for nodes classification is contained in the low-frequency domain, and thus contrary to images, high frequencies are less crucial to community detection. In particular, it is sometimes possible to obtain accuracies at a state-of-the-art level with simple classifiers that rely only on a few low frequencies
    corecore