57 research outputs found

    A decomposition theorem for binary matroids with no prism minor

    Full text link
    The prism graph is the dual of the complete graph on five vertices with an edge deleted, K5\eK_5\backslash e. In this paper we determine the class of binary matroids with no prism minor. The motivation for this problem is the 1963 result by Dirac where he identified the simple 3-connected graphs with no minor isomorphic to the prism graph. We prove that besides Dirac's infinite families of graphs and four infinite families of non-regular matroids determined by Oxley, there are only three possibilities for a matroid in this class: it is isomorphic to the dual of the generalized parallel connection of F7F_7 with itself across a triangle with an element of the triangle deleted; it's rank is bounded by 5; or it admits a non-minimal exact 3-separation induced by the 3-separation in P9P_9. Since the prism graph has rank 5, the class has to contain the binary projective geometries of rank 3 and 4, F7F_7 and PG(3,2)PG(3, 2), respectively. We show that there is just one rank 5 extremal matroid in the class. It has 17 elements and is an extension of R10R_{10}, the unique splitter for regular matroids. As a corollary, we obtain Dillon, Mayhew, and Royle's result identifying the binary internally 4-connected matroids with no prism minor [5]

    Galois groups of multivariate Tutte polynomials

    Full text link
    The multivariate Tutte polynomial Z^M\hat Z_M of a matroid MM is a generalization of the standard two-variable version, obtained by assigning a separate variable vev_e to each element ee of the ground set EE. It encodes the full structure of MM. Let \bv = \{v_e\}_{e\in E}, let KK be an arbitrary field, and suppose MM is connected. We show that Z^M\hat Z_M is irreducible over K(\bv), and give three self-contained proofs that the Galois group of Z^M\hat Z_M over K(\bv) is the symmetric group of degree nn, where nn is the rank of MM. An immediate consequence of this result is that the Galois group of the multivariate Tutte polynomial of any matroid is a direct product of symmetric groups. Finally, we conjecture a similar result for the standard Tutte polynomial of a connected matroid.Comment: 8 pages, final version, to appear in J. Alg. Comb. Substantial revisions, including the addition of two alternative proofs of the main resul

    Relations between M\"obius and coboundary polynomial

    Get PDF
    It is known that, in general, the coboundary polynomial and the M\"obius polynomial of a matroid do not determine each other. Less is known about more specific cases. In this paper, we will try to answer if it is possible that the M\"obius polynomial of a matroid, together with the M\"obius polynomial of the dual matroid, define the coboundary polynomial of the matroid. In some cases, the answer is affirmative, and we will give two constructions to determine the coboundary polynomial in these cases.Comment: 12 page

    Topological representations of matroid maps

    Full text link
    The Topological Representation Theorem for (oriented) matroids states that every (oriented) matroid can be realized as the intersection lattice of an arrangement of codimension one homotopy spheres on a homotopy sphere. In this paper, we use a construction of Engstr\"om to show that structure-preserving maps between matroids induce topological mappings between their representations; a result previously known only in the oriented case. Specifically, we show that weak maps induce continuous maps and that the process is a functor from the category of matroids with weak maps to the homotopy category of topological spaces. We also give a new and conceptual proof of a result regarding the Whitney numbers of the first kind of a matroid.Comment: Final version, 21 pages, 8 figures; Journal of Algebraic Combinatorics, 201

    Counting points on varieties over finite fields related to a conjecture of Kontsevich

    Full text link
    We describe a characteristic-free algorithm for “reducing” an algebraic variety defined by the vanishing of a set of integer polynomials. In very special cases, the algorithm can be used to decide whether the number of points on a variety, as the ground field varies over finite fields, is a polynomial function of the size of the field. The algorithm is then used to investigate a conjecture of Kontsevich regarding the number of points on a variety associated with the set of spanning trees of any graph. We also prove several theorems describing properties of a (hypothetical) minimal counterexample to the conjecture, and produce counterexamples to some related conjectures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43265/1/26_2005_Article_BF01608531.pd

    Lines, Circles, Planes and Spheres

    Full text link
    Let SS be a set of nn points in R3\mathbb{R}^3, no three collinear and not all coplanar. If at most nkn-k are coplanar and nn is sufficiently large, the total number of planes determined is at least 1+k(nk2)(k2)(nk2)1 + k \binom{n-k}{2}-\binom{k}{2}(\frac{n-k}{2}). For similar conditions and sufficiently large nn, (inspired by the work of P. D. T. A. Elliott in \cite{Ell67}) we also show that the number of spheres determined by nn points is at least 1+(n13)t3orchard(n1)1+\binom{n-1}{3}-t_3^{orchard}(n-1), and this bound is best possible under its hypothesis. (By t3orchard(n)t_3^{orchard}(n), we are denoting the maximum number of three-point lines attainable by a configuration of nn points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.Comment: 37 page

    Ideal hierarchical secret sharing schemes

    Get PDF
    Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention from the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization deals with the properties of the hierarchically minimal sets of the access structure, which are the minimal qualified sets whose participants are in the lowest possible levels in the hierarchy. By using our characterization, it can be efficiently checked whether any given hierarchical access structure that is defined by its hierarchically minimal sets is ideal. We use the well known connection between ideal secret sharing and matroids and, in particular, the fact that every ideal access structure is a matroid port. In addition, we use recent results on ideal multipartite access structures and the connection between multipartite matroids and integer polymatroids. We prove that every ideal hierarchical access structure is the port of a representable matroid and, more specifically, we prove that every ideal structure in this family admits ideal linear secret sharing schemes over fields of all characteristics. In addition, methods to construct such ideal schemes can be derived from the results in this paper and the aforementioned ones on ideal multipartite secret sharing. Finally, we use our results to find a new proof for the characterization of the ideal weighted threshold access structures that is simpler than the existing one.Peer ReviewedPostprint (author's final draft

    Extending Torelli map to toroidal compactifications of Siegel space

    Full text link
    It has been known since the 1970s that the Torelli map MgAgM_g \to A_g, associating to a smooth curve its jacobian, extends to a regular map from the Deligne-Mumford compactification Mˉg\bar{M}_g to the 2nd Voronoi compactification Aˉgvor\bar{A}_g^{vor}. We prove that the extended Torelli map to the perfect cone (1st Voronoi) compactification Aˉgperf\bar{A}_g^{perf} is also regular, and moreover Aˉgvor\bar{A}_g^{vor} and Aˉgperf\bar{A}_g^{perf} share a common Zariski open neighborhood of the image of Mˉg\bar{M}_g. We also show that the map to the Igusa monoidal transform (central cone compactification) is NOT regular for g9g\ge9; this disproves a 1973 conjecture of Namikawa.Comment: To appear in Inventiones Mathematica

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial

    Get PDF
    We derive some new structural results for the transfer matrix of square-lattice Potts models with free and cylindrical boundary conditions. In particular, we obtain explicit closed-form expressions for the dominant (at large |q|) diagonal entry in the transfer matrix, for arbitrary widths m, as the solution of a special one-dimensional polymer model. We also obtain the large-q expansion of the bulk and surface (resp. corner) free energies for the zero-temperature antiferromagnet (= chromatic polynomial) through order q^{-47} (resp. q^{-46}). Finally, we compute chromatic roots for strips of widths 9 <= m <= 12 with free boundary conditions and locate roughly the limiting curves.Comment: 111 pages (LaTeX2e). Includes tex file, three sty files, and 19 Postscript figures. Also included are Mathematica files data_CYL.m and data_FREE.m. Many changes from version 1: new material on series expansions and their analysis, and several proofs of previously conjectured results. Final version to be published in J. Stat. Phy
    corecore