89 research outputs found

    Synergistic Antitumor Effects of Novel HDAC Inhibitors and Paclitaxel In Vitro and In Vivo

    Get PDF
    Preclinical studies support the therapeutic potential of histone deacetylases inhibitors (HDACi) in combination with taxanes. The efficacy of combination has been mainly ascribed to a cooperative effect on microtubule stabilization following tubulin acetylation. In the present study we investigated the effect of paclitaxel in combination with two novel HDACi, ST2782 or ST3595, able to induce p53 and tubulin hyperacetylation. A synergistic effect of the paclitaxel/ST2782 (or ST3595) combination was found in wild-type p53 ovarian carcinoma cells, but not in a p53 mutant subline, in spite of a marked tubulin acetylation. Such a synergistic interaction was confirmed in additional human solid tumor cell lines harboring wild-type p53 but not in those expressing mutant or null p53. In addition, a synergistic cytotoxic effect was found when ST2782 was combined with the depolymerising agent vinorelbine. In contrast to SAHA, which was substantially less effective in sensitizing cells to paclitaxel-induced apoptosis, ST2782 prevented up-regulation of p21WAF1/Cip1 by paclitaxel, which has a protective role in response to taxanes, and caused p53 down-regulation, acetylation and mitochondrial localization of acetylated p53. The synergistic antitumor effects of the paclitaxel/ST3595 combination were confirmed in two tumor xenograft models. Our results support the relevance of p53 modulation as a major determinant of the synergistic interaction observed between paclitaxel and novel HDACi and emphasize the therapeutic interest of this combination

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Summary Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types
    • …
    corecore