1,382 research outputs found
Star formation in shocked cluster spirals and their tails
Recent observations of ram pressure stripped spiral galaxies in clusters
revealed details of the stripping process, i.e., the truncation of all
interstellar medium (ISM) phases and of star formation (SF) in the disk, and
multiphase star-forming tails. Some stripped galaxies, in particular in merging
clusters, develop spectacular star-forming tails, giving them a jellyfish-like
appearance. In merging clusters, merger shocks in the intra-cluster medium
(ICM) are thought to have overrun these galaxies, enhancing the ambient ICM
pressure and thus triggering SF, gas stripping and tail formation. We present
idealised hydrodynamical simulations of this scenario, including standard
descriptions for SF and stellar feedback. To aid the interpretation of recent
and upcoming observations, we focus on particular structures and dynamics in SF
patterns in the remaining gas disk and in the near tails, which are easiest to
observe. The observed jellyfish morphology is qualitatively reproduced for,
both, face-on and edge-on stripping. In edge-on stripping, the interplay
between the ICM wind and the disk rotation leads to asymmetries along the ICM
wind direction and perpendicular to it. The apparent tail is still part of a
highly deformed gaseous and young stellar disk. In both geometries, SF takes
place in knots throughout the tail, such that the stars in the tails show no
ordered age gradients. Significant SF enhancement in the disk occurs only at
radii where the gas will be stripped in due course.Comment: 6 pages, submitted to MNRAS Letter
The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties
We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (∼94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M_⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R <R200, velocities |vpec| < 3.5σ200 and stellar masses 9.5 ≤ log(M^∗_(approx)/M_⊙) ≤ 12. Finally, we give an update on the SAMI-GS progress for the cluster regions
Designing pre-bariatric surgery education: The value of Patients' experiences
Within the field of bariatric surgery, preoperative education to empower patients to adapt to the postoperative lifestyle and get the best outcomes in terms of health and quality of life is not standardised across the UK and is based mainly on clinical experience. In this study, the authors used qualitative research and a structured framework to design a preoperative psychosocial education course for people undergoing surgery. Qualitative interviews were performed to determine issues that previous surgery recipients felt were missing from their preoperative education, and the current educational course was redesigned to include this content. The study provides a template from which other Trusts could evaluate and improve their education
Deep Chandra observations of the stripped galaxy group falling into Abell 2142
In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond ~ 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k⁻²∙³ which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D ~ 0:1 -0:25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient
The stripping of a galaxy group diving into the massive cluster A2142
Structure formation in the current Universe operates through the accretion of
group-scale systems onto massive clusters. The detection and study of such
accreting systems is crucial to understand the build-up of the most massive
virialized structures we see today. We report the discovery with XMM-Newton of
an irregular X-ray substructure in the outskirts of the massive galaxy cluster
Abell 2142. The tip of the X-ray emission coincides with a concentration of
galaxies. The bulk of the X-ray emission of this substructure appears to be
lagging behind the galaxies and extends over a projected scale of at least 800
kpc. The temperature of the gas in this region is 1.4 keV, which is a factor of
~4 lower than the surrounding medium and is typical of the virialized plasma of
a galaxy group with a mass of a few 10^13M_sun. For this reason, we interpret
this structure as a galaxy group in the process of being accreted onto the main
dark-matter halo. The X-ray structure trailing behind the group is due to gas
stripped from its original dark-matter halo as it moves through the
intracluster medium (ICM). This is the longest X-ray trail reported to date.
For an infall velocity of ~1,200 km s-1 we estimate that the stripped gas has
been surviving in the presence of the hot ICM for at least 600 Myr, which
exceeds the Spitzer conduction timescale in the medium by a factor of >~400.
Such a strong suppression of conductivity is likely related to a tangled
magnetic field with small coherence length and to plasma microinstabilities.
The long survival time of the low-entropy intragroup medium suggests that the
infalling material can eventually settle within the core of the main cluster.Comment: 11 pages, 7 figures, accepted for publication in A&
- …
