171 research outputs found
Stability of As [n=4, 8, 20, 28, 32, 36, 60] Cage Structures
We present all-electron density functional study of the geometry, electronic
structure, vibrational modes, polarizabilities as well as the infrared and
Raman spectra of fullerene-like arsenic cages. The stability of As cages
for sizes 4, 8, 20, 28, 32, 36, and 60 wherein each As atom is three-fold
coordinated is examined. We find that all the cages studied are vibrationally
stable and while all the clusters are energetically stable with respect to
isolated arsenic atoms, only As is energetically stable against
dissociation into As. We suggest that the Raman spectra might be a means
for observing the As molecule in gas phase.Comment: Uses elsart.cls (Elsevier Science), (Better pictures can be obtained
from authors); Manuscript to appear in Chemical Physics Letter
Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle
The objective of this study was to use automated activity, lying, and rumination monitors to characterize prepartum behavior and predict calving in dairy cattle. Data were collected from 20 primiparous and 33 multiparous Holstein dairy cattle from September 2011 to May 2013 at the University of Kentucky Coldstream Dairy. The HR Tag (SCR Engineers Ltd., Netanya, Israel) automatically collected neck activity and rumination data in 2-h increments. The IceQube (IceRobotics Ltd., South Queensferry, United Kingdom) automatically collected number of steps, lying time, standing time, number of transitions from standing to lying (ly-. ing bouts), and total motion, summed in 15-min increments. IceQube data were summed in 2-h increments to match HR Tag data. All behavioral data were collected for 14 d before the predicted calving date. Retrospective data analysis was performed using mixed linear models to examine behavioral changes by day in the 14 d before calving. Bihourly behavioral differences from baseline values over the 14 d before calving were also evaluated using mixed linear models. Changes in daily rumination time, total motion, lying time, and lying bouts occurred in the 14 d before calving. In the bihourly analysis, extreme values for all behaviors occurred in the final 24 h, indicating that the monitored behaviors may be useful in calving prediction. To determine whether technologies were useful at predicting calving, random forest, linear discriminant analysis, and neural network machine -learning techniques were constructed and implemented using R version 3.1.0 (R Foundation for Statistical Computing, Vienna, Austria). These methods were used on variables from each technology and all combined variables from both technologies. A neural network analysis that combined variables from both technologies at the daily level yielded 100.0% sen-sitivity and 86.8% specificity. A neural network analysis that combined variables from both technologies in bihourly increments was used to identify 2-h periods in the 8 h before calving with 82.8% sensitivity and 80.4% specificity. Changes in behavior and machine-learning alerts indicate that commercially marketed behavioral monitors may have calving prediction potential
Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere
A method for the full three-dimensional (3-D) reconstruction of the
trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations
Observatory (STEREO) data is presented. Four CMEs that were simultaneously
observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and
Behind STEREO satellites were analysed. These observations were used to derive
CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data
support a radial propagation model. Assuming pseudo-radial propagation at large
distances from the Sun (15-240Rsun), the CME positions were extrapolated into
the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in
the different fields-of-view. It was found that CMEs slower than the solar wind
were accelerated, while CMEs faster than the solar wind were decelerated, with
both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi
Zanamivir susceptibility monitoring and characterization of influenza virus clinical isolates obtained during phase II clinical efficacy studies
Zanamivir is a highly selective neuraminidase (NA) inhibitor with
demonstrated clinical efficacy against influenza A and B virus infections.
In phase II clinical efficacy trials (NAIB2005 and NAIB2008), virological
substudies showed mean reductions in virus shedding after 24 h of
treatment of 1.5 to 2.0 log(10) 50% tissue culture infective doses
compared to a placebo, with no reemergence of virus after the completion
of therapy. Paired isolates (n = 41) obtained before and during therapy
with zanamivir demonstrated no shifts in susceptibility to zanamivir when
measured by NA assays, although for a few isolates NA activity was too low
to evaluate. In plaque reduction assays in MDCK cells, the susceptibility
of isolates to zanamivir was extremely variable even at baseline and did
not correlate with the speed of resolution of virus shedding. Isolates
with apparent limited susceptibility to zanamivir by plaque reduction
proved highly susceptible in vivo in the ferret model. Further sequence
analysis of paired isolates revealed no changes in the hemagglutinin and
NA genes in the majority of isolates. The few changes observed were all
natural variants. No amino acid changes that had previously been
identified in vitro as being involved with reduced susceptibility to
zanamivir were observed. These studies highlighted problems associated
with monitoring susceptibility to NA inhibitors in the clinic, in that no
reliable cell-based assay is available. At present the NA assay is the
best available predictor of susceptibility to NA inhibitors in vivo, as
measured in the validated ferret model of infection
Modeling, optimizing and simulating robot calibration with accuracy improvement
This work describes techniques for modeling, optimizing and simulating calibration processes ofrobots using off-line programming. The identification of geometric parameters of the nominalkinematic model is optimized using techniques of numerical optimization of the mathematicalmodel. The simulation of the actual robot and the measurement system is achieved by introducingrandom errors representing their physical behavior and its statistical repeatability. An evaluationof the corrected nominal kinematic model brings about a clear perception of the influence ofdistinct variables involved in the process for a suitable planning, and indicates a considerableaccuracy improvement when the optimized model is compared to the non-optimized one
Evidence for SU(3) symmetry breaking from hyperon production
We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD)
by considering two typical sets of quark contributions to the spin content of
the octet baryons: Set-1 with SU(3) flavor symmetry and Set-2 with SU(3) flavor
symmetry breaking in HSD. The quark distributions of the octet baryons are
calculated with a successful statistical model. Using an approximate relation
between the quark fragmentation functions and the quark distributions, we
predict polarizations of the octet baryons produced in annihilation
and semi-inclusive deeply lepton-nucleon scattering in order to reveal the
SU(3) symmetry breaking effect on the spin structure of the octet baryons. We
find that the SU(3) symmetry breaking significantly affects the hyperon
polarization. The available experimental data on the polarization
seem to favor the theoretical predictions with SU(3) symmetry breaking. We
conclude that there is a possibility to get a collateral evidence for SU(3)
symmetry breaking from hyperon production. The theoretical errors for our
predictions are discussed.Comment: 3 tables, 14 figure
Photoproduction of mesons associated with a leading neutron
The photoproduction of mesons associated with a leading
neutron has been observed with the ZEUS detector in collisions at HERA
using an integrated luminosity of 80 pb. The neutron carries a large
fraction, {}, of the incoming proton beam energy and is detected at
very small production angles, { mrad}, an indication of
peripheral scattering. The meson is centrally produced with
pseudorapidity {
GeV}, which is large compared to the average transverse momentum of the neutron
of 0.22 GeV. The ratio of neutron-tagged to inclusive production is
in the photon-proton
center-of-mass energy range { GeV}. The data suggest that the
presence of a hard scale enhances the fraction of events with a leading neutron
in the final state.Comment: 28 pages, 4 figures, 2 table
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
A distinct CD38+CD45RA+ population of CD4+, CD8+, and double-negative T cells is controlled by FAS.
The identification and characterization of rare immune cell populations in humans can be facilitated by their growth advantage in the context of specific genetic diseases. Here, we use autoimmune lymphoproliferative syndrome to identify a population of FAS-controlled TCRαβ+ T cells. They include CD4+, CD8+, and double-negative T cells and can be defined by a CD38+CD45RA+T-BET- expression pattern. These unconventional T cells are present in healthy individuals, are generated before birth, are enriched in lymphoid tissue, and do not expand during acute viral infection. They are characterized by a unique molecular signature that is unambiguously different from other known T cell differentiation subsets and independent of CD4 or CD8 expression. Functionally, FAS-controlled T cells represent highly proliferative, noncytotoxic T cells with an IL-10 cytokine bias. Mechanistically, regulation of this physiological population is mediated by FAS and CTLA4 signaling, and its survival is enhanced by mTOR and STAT3 signals. Genetic alterations in these pathways result in expansion of FAS-controlled T cells, which can cause significant lymphoproliferative disease
- …