709 research outputs found

    Surface nanobubbles on the rare earth fluorcarbonate mineral synchysite

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordData availability: Original data from this publication is available via open access at the British Geological Survey National Geoscience Data Centre, United Kingdom (NGDC)Surface nanobubbles have been identified to play an important role in a range of industries from mineral processing to food science. The formation of surface nanobubbles is of importance for mineral processing in the extraction of complex ores, such as those containing rare earth elements. This is due to the way minerals are extracted utilising froth flotation. In this study, surface nanobubbles were imaged using non-contact atomic force microscopy on a polished cross section containing rare earth minerals. Nanobubbles were found on synchysite under reagent conditions expected to induce hydrophobicity in rare earth minerals, which is required for efficient processing. Synchysite –(Ce)is a rare earth fluorcarbonate mineral containing over 30% rare earth elements. Relatively little research has been conducted on synchysite, with only a few papers on its surface behaviour and flotation. The resulting nanobubbles were analysed and showed an average contact angle of 24° ± 8. These are in line with contact angles found on dolomite and galena by previous studies.Mkango Resources Ltd

    Zeta potentials of the rare earth element fluorcarbonate minerals focusing on bastnäsite and parisite

    Get PDF
    Rare earth elements (REE) are critical to a wide range of technologies ranging from mobile phones to wind turbines. Processing and extraction of REE minerals from ore bodies is, however, both challenging and relatively poorly understood, as the majority of deposits contain only limited enrichment of REEs. An improved understanding of the surface properties of the minerals is important in informing and optimising their processing, in particular for separation by froth flotation. The measurement of zeta potential can be used to extract information regarding the electrical double layer, and hence surface properties of these minerals. There are over 34 REE fluorcarbonate minerals currently identified, however bastnäsite, synchysite and parisite are of most economic importance. Bastnäsite-(Ce), the most common REE fluorcarbonate, supplies over 50% of the world's REE. Previous studies of bastnäsite have showed a wide range of surface behaviour, with the iso-electric point (IEP), being measured between pH values of 4.6 and 9.3. In contrast, no values of IEP have been reported for parisite or synchysite. In this work, we review previous studies of the zeta potentials of bastnäsite to investigate the effects of different methodologies and sample preparation. In addition, measurements of zeta potentials of parisite under water, collector and supernatant conditions were conducted, the first to be reported. These results showed an iso-electric point for parisite of 5.6 under water, with a shift to a more negative zeta potential with both collector (hydroxamic and fatty acids) and supernatant conditions. The IEP with collectors and supernatant was <3.5. As zeta potential measurements in the presence of reagents and supernatants are the most rigorous way of determining the efficiency of a flotation reagent, the agreement between parisite zeta potentials obtained here and previous work on bastnäsite suggests that parisite may be processed using similar reagent schemes to bastnäsite. This is important for future processing of REE deposits, comprising of more complex REE mineralogy

    Metastasis of a cecal adenocarcinoma to the prostate five years after a right hemicolectomy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Prostatic metastasis from a primary bowel adenocarcinoma has been only rarely reported in the medical literature. The case reported here is rare in the fact that the primary tumor was from a right-sided bowel adenocarcinoma. It is unusual because initial immunostaining was not fully conclusive, and so a relatively new method of immunostaining, CDX2, was used to ascertain its histopathology.</p> <p>Case presentation</p> <p>We describe the case of a 54-year-old Caucasian man who had a right hemicolectomy for a primary cecal adenocarcinoma, which was completely excised. Following the procedure, he received adjuvant chemotherapy. Computed tomography scans showed no evidence of local recurrence or metastatic disease. Then, five years later, he presented to his general practitioner with urinary symptoms. An abnormal prostate was palpated on digital rectal examination. Trans-rectal prostatic biopsies were performed, which showed colorectal metastases within the prostate gland. This was confirmed with CDX2 immunohistochemistry. There was no further evidence of distant metastases on positron emission tomography-computed tomography scans.</p> <p>Conclusions</p> <p>This case demonstrates a rare isolated hematogenous spread to the prostate from a primary cecal adenocarcinoma, several years after definitive treatment and excision. This highlights the importance of accurate immunohistochemistry and imaging in planning further management and treatment.</p

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Enhanced Microwave Absorption Properties of Intrinsically Core/shell Structured La0.6Sr0.4MnO3Nanoparticles

    Get PDF
    The intrinsically core/shell structured La0.6Sr0.4MnO3nanoparticles with amorphous shells and ferromagnetic cores have been prepared. The magnetic, dielectric and microwave absorption properties are investigated in the frequency range from 1 to 12 GHz. An optimal reflection loss of −41.1 dB is reached at 8.2 GHz with a matching thickness of 2.2 mm, the bandwidth with a reflection loss less than −10 dB is obtained in the 5.5–11.3 GHz range for absorber thicknesses of 1.5–2.5 mm. The excellent microwave absorption properties are a consequence of the better electromagnetic matching due to the existence of the protective amorphous shells, the ferromagnetic cores, as well as the particular core/shell microstructure. As a result, the La0.6Sr0.4MnO3nanoparticles with amorphous shells and ferromagnetic cores may become attractive candidates for the new types of electromagnetic wave absorption materials
    corecore