3,958 research outputs found
Establishment of a promoter based chromatin architecture on recently replicated DNA can accommodate variable internucleosome spacing
Nucleosomes, the fundamental subunits of eukaryotic chromatin, are organized with respect to transcriptional start sites. A major challenge to the persistence of this organization is the disassembly of nucleosomes during DNA replication. Here, we use complimentary approaches to map the locations of nucleosomes on recently replicated DNA. We find that nucleosomes are substantially realigned with promoters during the minutes following DNA replication. As a result, the nucleosomal landscape is largely re-established before newly replicated chromosomes are partitioned into daughter cells and can serve as a platform for the re-establishment of gene expression programmes. When the supply of histones is disrupted through mutation of the chaperone Caf1, a promoter-based architecture is generated, but with increased inter-nucleosomal spacing. This indicates that the chromatin remodelling enzymes responsible for spacing nucleosomes are capable of organizing nucleosomes with a range of different linker DNA lengths
Advanced once-through flow cell methodology for evaluation of a new staged inhibition concept to mitigate corrosion of carbon steel in high-strength hydrochloric acid flow
A new staged acid corrosion inhibition (ACI) concept, utilising polymerisable ACIs, has been developed to minimise the corrosion of coiled tubing and wellbore casing materials during matrix acidizing operations. The concept has been evaluated using a customised once-through flow cell and 4 molar hydrochloric acid at 80 °C. A high quality, protective inhibitor film is established using an elevated ACI concentration during the test period 0–1 h (Stage 1), followed by a significantly reduced ACI concentration during the period 1–4 h (Stage 2). This approach is able to maintain good film persistency and acceptably low corrosion rates
Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy
Using optimal matched filtering, we search 25 hours of data from the LIGO
40-meter prototype laser interferometric gravitational-wave detector for
gravitational-wave chirps emitted by coalescing binary systems within our
Galaxy. This is the first test of this filtering technique on real
interferometric data. An upper limit on the rate R of neutron star binary
inspirals in our Galaxy is obtained: with 90% confidence, R< 0.5/hour. Similar
experiments with LIGO interferometers will provide constraints on the
population of tight binary neutron star systems in the Universe.Comment: RevTeX, minor revisions, exactly as published in PRL 83 (1999) p1498,
4 pages, 2 figures include
Second post-Newtonian gravitational wave polarizations for compact binaries in elliptical orbits
The second post-Newtonian (2PN) contribution to the `plus' and `cross'
gravitational wave polarizations associated with gravitational radiation from
non-spinning, compact binaries moving in elliptic orbits is computed. The
computation starts from our earlier results on 2PN generation, crucially
employs the 2PN accurate generalized quasi-Keplerian parametrization of
elliptic orbits by Damour, Sch\"afer and Wex and provides 2PN accurate
expressions modulo the tail terms for gravitational wave polarizations
incorporating effects of eccentricity and periastron precession.Comment: 40 pages, 10 figures, To appear in Phys. Rev.
Planet gaps in the dust layer of 3D protoplanetary disks. II. Observability with ALMA
[Abridged] Aims: We provide predictions for ALMA observations of planet gaps
that account for the specific spatial distribution of dust that results from
consistent gas+dust dynamics. Methods: In a previous work, we ran full 3D,
two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet
embedded in a gas+dust T Tauri disk for different planet masses and grain
sizes. In this work, the resulting dust distributions are passed to the Monte
Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA
wavebands. We then use the ALMA simulator to produce images that include
thermal and phase noise for a range of angular resolutions, wavelengths, and
integration times, as well as for different inclinations, declinations and
distances. We also produce images which assume that gas and dust are well mixed
with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all
made under this hypothesis. Results: Our findings clearly demonstrate the
importance of correctly incorporating the dust dynamics. We show that the gap
carved by a 1 M_J planet orbiting at 40 AU is visible with a much higher
contrast than the well-mixed assumption would predict. In the case of a 5 M_J
planet, we clearly see a deficit in dust emission in the inner disk, and point
out the risk of interpreting the resulting image as that of a transition disk
with an inner hole if observed in unfavorable conditions. Planet signatures are
fainter in more distant disks but declination or inclination to the
line-of-sight have little effect on ALMA's ability to resolve the gaps.
Conclusions: ALMA has the potential to see signposts of planets in disks of
nearby star-forming regions. We present optimized observing parameters to
detect them in the case of 1 and 5 M_J planets on 40 AU orbits.Comment: 15 pages, 21 figures, accepted by Astronomy & Astrophysics, a higher
resolution version of the paper is available at
http://www-obs.univ-lyon1.fr/labo/perso/jean-francois.gonzalez/Papers/Gaps_ALMA.pd
Visual short-term memory deficits associated with GBA mutation and Parkinson's disease.
Individuals with mutation in the lysosomal enzyme glucocerebrosidase (GBA) gene are at significantly high risk of developing Parkinson's disease with cognitive deficit. We examined whether visual short-term memory impairments, long associated with patients with Parkinson's disease, are also present in GBA-positive individuals-both with and without Parkinson's disease. Precision of visual working memory was measured using a serial order task in which participants observed four bars, each of a different colour and orientation, presented sequentially at screen centre. Afterwards, they were asked to adjust a coloured probe bar's orientation to match the orientation of the bar of the same colour in the sequence. An additional attentional 'filtering' condition tested patients' ability to selectively encode one of the four bars while ignoring the others. A sensorimotor task using the same stimuli controlled for perceptual and motor factors. There was a significant deficit in memory precision in GBA-positive individuals-with or without Parkinson's disease-as well as GBA-negative patients with Parkinson's disease, compared to healthy controls. Worst recall was observed in GBA-positive cases with Parkinson's disease. Although all groups were impaired in visual short-term memory, there was a double dissociation between sources of error associated with GBA mutation and Parkinson's disease. The deficit observed in GBA-positive individuals, regardless of whether they had Parkinson's disease, was explained by a systematic increase in interference from features of other items in memory: misbinding errors. In contrast, impairments in patients with Parkinson's disease, regardless of GBA status, was explained by increased random responses. Individuals who were GBA-positive and also had Parkinson's disease suffered from both types of error, demonstrating the worst performance. These findings provide evidence for dissociable signature deficits within the domain of visual short-term memory associated with GBA mutation and with Parkinson's disease. Identification of the specific pattern of cognitive impairment in GBA mutation versus Parkinson's disease is potentially important as it might help to identify individuals at risk of developing Parkinson's disease
Measuring gravitational waves from binary black hole coalescences: II. the waves' information and its extraction, with and without templates
We discuss the extraction of information from detected binary black hole
(BBH) coalescence gravitational waves, focusing on the merger phase that occurs
after the gradual inspiral and before the ringdown. Our results are: (1) If
numerical relativity simulations have not produced template merger waveforms
before BBH detections by LIGO/VIRGO, one can band-pass filter the merger waves.
For BBHs smaller than about 40 solar masses detected via their inspiral waves,
the band pass filtering signal to noise ratio indicates that the merger waves
should typically be just barely visible in the noise for initial and advanced
LIGO interferometers. (2) We derive an optimized (maximum likelihood) method
for extracting a best-fit merger waveform from the noisy detector output; one
"perpendicularly projects" this output onto a function space (specified using
wavelets) that incorporates our prior knowledge of the waveforms. An extension
of the method allows one to extract the BBH's two independent waveforms from
outputs of several interferometers. (3) If numerical relativists produce codes
for generating merger templates but running the codes is too expensive to allow
an extensive survey of the merger parameter space, then a coarse survey of this
parameter space, to determine the ranges of the several key parameters and to
explore several qualitative issues which we describe, would be useful for data
analysis purposes. (4) A complete set of templates could be used to test the
nonlinear dynamics of general relativity and to measure some of the binary
parameters. We estimate the number of bits of information obtainable from the
merger waves (about 10 to 60 for LIGO/VIRGO, up to 200 for LISA), estimate the
information loss due to template numerical errors or sparseness in the template
grid, and infer approximate requirements on template accuracy and spacing.Comment: 33 pages, Rextex 3.1 macros, no figures, submitted to Phys Rev
Effects of pitch size and skill level on tactical behaviours of Association Football players during small-sided and conditioned games
In Association Football, the study of variability in players' movement trajectories during performance can provide insights on tactical behaviours. This study aimed to analyse the movement variability present in: i) the players' actions zones and ii), distances travelled over time, considered as a player's positional spatial reference. Additionally, we investigated whether the movement variability characteristics of players from different skill levels varied. Two groups of U-17 yrs players of different performance levels (national and regional) performed in three small-sided games with varying pitch dimensions (small, intermediate and large). Linear and non-linear analyses were used to capture the magnitude and structure of their movement variability. Results showed that increases in pitch size resulted in more restricted action zones and higher distance values from personal spatial positional references for both groups. National-level players were more sensitive to pitch modifications and displayed more variability than regional-level players in the small and intermediate pitches. These findings advance understanding about individual tactical behaviours in Association Football and have implications for training design, using pitch size manipulation
- …