562 research outputs found

    Mechanism for the formation of the high-altitude stagnant cusp: Cluster and SuperDARN observations

    Get PDF
    On 16 March 2002, Cluster moved from nightside to dayside, across the high-altitude northern cusp during an extended period of relatively steady positive IMF BY and BZ. Combined Cluster and SuperDARN data imply the existence of two reconnection sites: in the high- latitude northern hemisphere dusk and southern hemisphere dawn sectors. Within the cusp, Cluster encounters 3 distinct plasma regions. First, injections of magnetosheath-like plasma associated with dawnward and sunward convection suggest Cluster crosses newly- reconnected field lines related to the dusk reconnection site. Second, Cluster observes a Stagnant Exterior Cusp (SEC), characterized by nearly isotropic and stagnant plasma. Finally, Cluster crosses a region with significant antifield-aligned flows. We suggest the observed SEC may be located on newly re-closed field lines, reconnected first poleward of the northern hemisphere cusp and later reconnected again poleward of the southern hemisphere cusp. We discuss how the Cluster observations correspond to expectations of ’double reconnection’ model

    Cancer risk assessment tools for symptomatic individuals presenting to primary care: a systematic scoping review

    Get PDF
    Cancer risk assessment tools for symptomatic individuals presenting to primary care: a systematic scoping review ABSTRACT CANCER RISK ASSESSMENT TOOLS FOR SYMPTOMATIC INDIVIDUALS PRESENTING TO PRIAMRY CARE: A SYSTEMATIC SCOPING REVIEW Background: Novel cancer risk assessment tools, designed to predict cancer risk in symptomatic individuals in primary care settings, are being advocated to address the problem of late diagnosis of cancer in the UK. Despite this, little is known about the use and implementation of cancer risk assessment tools to aid early detection of cancer risk in general practice. We aimed to scope the evidence on the type of cancer risk assessment tools available for symptomatic individuals, and the current use of the tools including the benefits and barriers to their use. Methods: Using Arksey and O’Malley’s framework, we conducted a systematic scoping review of published literature in the English language from 2004 to 2017. We searched six electronic databases (Medline, CINAHL, Scopus, Cochrane, Science Direct and Psych-INFO) using specific search terms. A narrative synthesis was used to summarise the findings from the studies identified. Results: We retrieved a total of 471 papers from the electronic databases and 43 matched the inclusion criteria. Novel cancer risk assessment tools for symptomatic individuals in primary care identified from the review included the QCancer and RAT series. While there was some evidence supporting use of some of the tools, there was limited evidence on the current use and the impact of using the tools on patient outcomes such as rates of cancer diagnosis and survival. There was also some evidence on potential benefits (potential aid for clinicians to confirm investigations and referral decisions, for reassurance of patients when investigation not needed, helping GPs to recognise symptoms of some cancers and useful for detecting cancer risk in patients with complex histories) and barriers to using the tools in primary care consultations. As the review found, the following barriers to use of the tools would need to be addressed for effective implementation of the tools in primary care: how to make the tools available to clinicians, how best to communicate cancer risk information to patients, uncertainty about the threshold for action to be taken, extra consultation time requirement, potential for causing alarm to patients, potential burden on resources, a challenge about integrating the tools into general practice workflow and a potential for ‘prompt fatigue. Conclusion: The review revealed evidence of novel cancer risk assessment tools designed for symptomatic individuals in primary care. There was also evidence on potential benefits and barriers relating to the use of the tools. There is a need to address the barriers identified when implementing the tools in general consultations

    Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species

    Full text link
    We propose a hypothesis for digestive constraints on the browsing and grazing options available to ruminants: that the diet-niche range (maximum and minimum grass intake) of a species is dependent upon its predisposition to stratified rumen contents, based on observations that this characteristic is a critical step towards enhanced fibre digestion and greater fluid throughput. We compare a physiological (heterogeneity of ingesta fluid content) and an anatomical (the intraruminal papillation pattern) measure with dietary evidence for a range of African and temperate species. Both measures are strongly related to the mean percentage of grass in species’ natural diets, as well as to the maximum and minimum levels of grass intake, respectively. The nature of these effects implies a stratification-level threshold, below which a species will not use a grass-based diet, but above which grass consumption can increase exponentially. However, above this threshold, a minimum percentage of grass in the diet is a prerequisite for optimal performance. We argue that this second constraint is crucial, as it depicts how a greater fluid throughput reduces potential for detoxification of plant secondary compounds, and therefore limits the maximum amount of browse a stratifying species will consume

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore