13 research outputs found

    Cachimbos europeus de cerùmica branca, séculos XVI ao XIX: parùmetros båsicos para anålise arqueológica

    Get PDF
    O tabaco foi introduzido na Europa no final do sĂ©culo XV. Desde entĂŁo, uma das formas mais comuns para o seu consumo foi o cachimbo, alĂ©m do rapĂ©, do tabaco de mascar, do charuto e, mais recentemente, dos cigarros. Os cachimbos de cerĂąmica branca, largamente produzidos e utilizados na Europa desde o sĂ©culo XV, sĂŁo encontrados em sĂ­tios arqueolĂłgicos histĂłricos ao redor do mundo, incluindo no Brasil, em decorrĂȘncia do comĂ©rcio internacional, que gradualmente se intensificou apĂłs o inĂ­cio da conquista europeia. Eles funcionam como excelentes elementos para datação de sĂ­tios e estratos arqueolĂłgicos, tendo sido estudados em vĂĄrios paĂ­ses a partir dessa abordagem. Ainda, esse tipo de artefato, mais que fornecer dataçÔes, permite identificar redes comerciais entre naçÔes e desenvolver discussĂ”es de cunho social e cultural. Contudo, eles foram pouco estudados no Brasil. Visando contribuir com os estudos nacionais dessa categoria material, este artigo oferece uma revisĂŁo da literatura internacional acerca do histĂłrico da produção dos cachimbos europeus de caulim, incluindo apresentação dos principais centros produtores; da morfologia e decoração desses produtos, considerando a cronologia do fabrico; e dos mĂ©todos de anĂĄlise dos diferentes cachimbos de caulim no Ăąmbito da arqueologia histĂłrica.Tobacco was introduced in Europe at the end of the 15th century. Since then, one of the most traditional means for its use has been the pipe, next to the powder version, chewing, cigars, and, more recently, cigarettes. White clay tobacco pipes, widely produced and used in Europe since the 15th century, are found in historical archaeological sites around the world, including Brazil, due to international trade, which gradually intensified with the European conquest of the New World. They are excellent guides for dating archaeological sites and layers. In addition, this type of artifact, more than a dating tool, permits identifying trading networks between nations and developing discussions of cultural and social nature. These pipes, however, have been understudied in Brazil. In order to contribute to studies of this type of artifact in our country, this paper offers a revision of the international literature on the history of clay pipe production in Europe, including the presentation of main production centers; morphology and decoration of these products, considering issues of fabrication chronology; and the methods used in Historical Archaeology for analyzing clay tobacco pipes

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Cachimbos europeus de cerùmica branca, séculos XVI ao XIX: parùmetros båsicos para anålise arqueológica

    No full text

    AusTraits: a curated plant trait database for the Australian flora

    No full text
    INTRODUCTION AusTraits is a transformative database, containing measurements on the traits of Australia’s plant taxa, standardised from hundreds of disconnected primary sources. So far, data have been assembled from > 250 distinct sources, describing > 400 plant traits and > 26,000 taxa. To handle the harmonising of diverse data sources, we use a reproducible workflow to implement the various changes required for each source to reformat it suitable for incorporation in AusTraits. Such changes include restructuring datasets, renaming variables, changing variable units, changing taxon names. While this repository contains the harmonised data, the raw data and code used to build the resource are also available on the project’s GitHub repository, http://traitecoevo.github.io/austraits.build/. Further information on the project is available in the associated publication and at the project website austraits.org. Falster, Gallagher et al (2021) AusTraits, a curated plant trait database for the Australian flora. Scientific Data 8: 254, https://doi.org/10.1038/s41597-021-01006-6 CONTRIBUTORS The project is jointly led by Dr Daniel Falster (UNSW Sydney), Dr Rachael Gallagher (Western Sydney University), Dr Elizabeth Wenk (UNSW Sydney), and Dr HervĂ© Sauquet (Royal Botanic Gardens and Domain Trust Sydney), with input from > 300 contributors from over > 100 institutions (see full list above). The project was initiated by Dr Rachael Gallagher and Prof Ian Wright while at Macquarie University. We are grateful to the following institutions for contributing data Australian National Botanic Garden, Brisbane Rainforest Action and Information Network, Kew Botanic Gardens, National Herbarium of NSW, Northern Territory Herbarium, Queensland Herbarium, Western Australian Herbarium, South Australian Herbarium, State Herbarium of South Australia, Tasmanian Herbarium, Department of Environment, Land, Water and Planning, Victoria. AusTraits has been supported by investment from the Australian Research Data Commons (ARDC), via their “Transformative data collections” (https://doi.org/10.47486/TD044) and “Data Partnerships” (https://doi.org/10.47486/DP720) programs; fellowship grants from Australian Research Council to Falster (FT160100113), Gallagher (DE170100208) and Wright (FT100100910), a grant from Macquarie University to Gallagher. The ARDC is enabled by National Collaborative Research Investment Strategy (NCRIS). ACCESSING AND USE OF DATA The compiled AusTraits database is released under an open source licence (CC-BY), enabling re-use by the community. A requirement of use is that users cite the AusTraits resource paper, which includes all contributors as co-authors: Falster, Gallagher et al (2021) AusTraits, a curated plant trait database for the Australian flora. Scientific Data 8: 254, https://doi.org/10.1038/s41597-021-01006-6 In addition, we encourage users you to cite the original data sources, wherever possible. Note that under the license data may be redistributed, provided the attribution is maintained. The downloads below provide the data in two formats: austraits-3.0.2.zip: data in plain text format (.csv, .bib, .yml files). Suitable for anyone, including those using Python. austraits-3.0.2.rds: data as compressed R object. Suitable for users of R (see below). Both objects contain all the data and relevant meta-data. AUSTRAITS R PACKAGE For R users, access and manipulation of data is assisted with the austraits R package. The package can both download data and provides examples and functions for running queries. STRUCTURE OF AUSTRAITS The compiled AusTraits database has the following main components: austraits ├── traits ├── sites ├── contexts ├── methods ├── excluded_data ├── taxanomic_updates ├── taxa ├── definitions ├── contributors ├── sources └── build_info These elements include all the data and contextual information submitted with each contributed datasets. A schema and definitions for the database are given in the file/component definitions, available within the download. The file dictionary.html provides the same information in textual format. Full details on each of these components and columns are contained within the definition. Similar information is available at http://traitecoevo.github.io/austraits.build/articles/Trait_definitions.html and http://traitecoevo.github.io/austraits.build/articles/austraits_database_structure.html. CONTRIBUTING We envision AusTraits as an on-going collaborative community resource that: Increases our collective understanding the Australian flora; and Facilitates accumulation and sharing of trait data; Builds a sense of community among contributors and users; and Aspires to fully transparent and reproducible research of the highest standard. As a community resource, we are very keen for people to contribute. Assembly of the database is managed on GitHub at traitecoevo/austraits.build. Here are some of the ways you can contribute: Reporting Errors: If you notice a possible error in AusTraits, please post an issue on GitHub. Refining documentation: We welcome additions and edits that make using the existing data or adding new data easier for the community. Contributing new data: We gladly accept new data contributions to AusTraits. See full instructions on how to contribute at http://traitecoevo.github.io/austraits.build/articles/contributing_data.html

    AusTraits, a curated plant trait database for the Australian flora

    Get PDF
    International audienceWe introduce the austraits database-a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual-and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge

    Maraviroc for previously treated patients with R5 HIV-1 infection

    No full text
    Background CC chemokine receptor 5 antagonists are a new class of antiretroviral agents.Methods We conducted two double- blind, placebo- controlled, phase 3 studies - Maraviroc versus Optimized Therapy in Viremic Antiretroviral Treatment- Experienced Patients ( MOTIVATE) 1 and MOTIVATE 2 - with patients who had R5 human immunodeficiency virus type 1 ( HIV- 1) only. They had been treated with or had resistance to three antiretroviral- drug classes and had HIV- 1 RNA levels of more than 5000 copies per milliliter. The patients were randomly assigned to one of three antiretroviral regimens consisting of maraviroc once daily, maraviroc twice daily, or placebo, each of which included optimized background therapy ( OBT) based on treatment history and drug- resistance testing. Safety and efficacy were assessed after 48 weeks.Results A total of 1049 patients received the randomly assigned study drug; the mean baseline HIV- 1 RNA level was 72,400 copies per milliliter, and the median CD4 cell count was 169 per cubic millimeter. At 48 weeks, in both studies, the mean change in HIV- 1 RNA from baseline was greater with maraviroc than with placebo: - 1.66 and - 1.82 log(10) copies per milliliter with the once- daily and twice- daily regimens, respectively, versus - 0.80 with placebo in MOTIVATE 1, and - 1.72 and - 1.87 log(10) copies per milliliter, respectively, versus - 0.76 with placebo in MOTIVATE 2. More patients receiving maraviroc once or twice daily had HIV- 1 RNA levels of less than 50 copies per milliliter ( 42% and 47%, respectively, vs. 16% in the placebo group in MOTIVATE 1; 45% in both maraviroc groups vs. 18% in MOTIVATE 2; P< 0.001 for both comparisons in each study). The change from baseline in CD4 counts was also greater with maraviroc once or twice daily than with placebo ( increases of 113 and 122 per cubic millimeter, respectively, vs. 54 in MOTIVATE 1; increases of 122 and 128 per cubic millimeter, respectively, vs. 69 in MOTIVATE 2; P< 0.001 for both comparisons in each study). Frequencies of adverse events were similar among the groups.Conclusions Maraviroc, as compared with placebo, resulted in significantly greater suppression of HIV- 1 and greater increases in CD4 cell counts at 48 weeks in previously treated patients with R5 HIV- 1 who were receiving OBT. (ClinicalTrials. gov numbers, NCT00098306 and NCT00098722.)
    corecore