13 research outputs found
Fat tissue and adiponectin: new players in critical care?
Historically, adipose tissue was thought to be a passive tissue that stores energy and protects the body from temperature and injury. In contrast to this concept, it is now evident that adipose tissue is an active endocrine organ secreting many kinds of adipocytokines, including adiponectin. Presumably, adipose tissue and its products may have some impact on numerous pathways of response to trauma, sepsis and stress. The discussion on a plausible role of adiponectin in critical illness has been raised by the fact of finding hypoadiponectinemia in critically ill patients. The nature of this phenomenon, however, remains to be elucidated, and noteworthy clinical studies should prompt further efforts in basic research to explain the mechanisms beyond the clinical observation of low adiponectin levels in humans with severe illness
An Update to the WISP-1/CCN4 Role in Obesity, Insulin Resistance and Diabetes
Insulin resistance refers to the diminished response of peripheral tissues to insulin and is considered the major risk factor for type 2 diabetes. Although many possible mechanisms have been reported to develop insulin resistance, the exact underlying processes remain unclear. In recent years, the role of adipose tissue as a highly active metabolic and endocrine organ, producing proteins called adipokines and their multidirectional activities has gained interest. The physiological effects of adipokines include energy homeostasis and insulin sensitivity regulation. In addition, an excess of adipose tissue is followed by proinflammatory state which results in dysregulation of secreted cytokines contributing to insulin resistance. Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP-1), also known as CCN4, has recently been described as a novel adipokine, whose circulating levels are elevated in obese and insulin resistant individuals. Growing evidence suggests that WISP-1 may participate in the impaired glucose homeostasis. In this review, we characterize WISP-1 and summarize the latest reports on the role of WISP-1 in obesity, insulin resistance and type 2 diabetes
Impaired Glucose Metabolism in Bipolar Patients: The Role of Psychiatrists in Its Detection and Management
Bipolar patients have a higher risk of type 2 diabetes and obesity, which are associated with cardiovascular diseases as the leading cause of death in this group. Additionally, there is growing evidence that impaired glucose metabolism in bipolar patients is associated with rapid cycling, poor response to mood stabilizers and chronic course of illness. The aim of the study was to assess the prevalence of type 2 diabetes and other types of impaired glucose metabolism in bipolar patients along with an evaluation of the Fasting Triglycerides and Glucose Index (TyG) as a method of the insulin sensitivity assessment. The analysis of fasting glycemia, insulinemia and lipid profile in euthymic bipolar patients was performed, and the Homeostasis model assessment for insulin resistance (HOMA-IR) and TyG were computed. Type 2 diabetes was observed in 9% and insulin resistance with HOMA-IR in 48% of patients. The TyG and HOMA-IR indices were correlated (p < 0.0001), the TyG index value of 4.7 had the highest sensitivity and specificity for insulin resistance detection. The usefulness of TyG in the recognition of insulin resistance in bipolar patients was suggested. The significant role of psychiatrists in the detection and management of impaired glucose metabolism in bipolar patients was presented
The Hormonal Background of Hair Loss in Non-Scarring Alopecias
Hair loss is a common clinical condition connected with serious psychological distress and reduced quality of life. Hormones play an essential role in the regulation of the hair growth cycle. This review focuses on the hormonal background of hair loss, including pathophysiology, underlying endocrine disorders, and possible treatment options for alopecia. In particular, the role of androgens, including dihydrotestosterone (DHT), testosterone (T), androstenedione (A4), dehydroepiandrosterone (DHEA), and its sulfate (DHEAS), has been studied in the context of androgenetic alopecia. Androgen excess may cause miniaturization of hair follicles (HFs) in the scalp. Moreover, hair loss may occur in the case of estrogen deficiency, appearing naturally during menopause. Also, thyroid hormones and thyroid dysfunctions are linked with the most common types of alopecia, including telogen effluvium (TE), alopecia areata (AA), and androgenetic alopecia. Particular emphasis is placed on the role of the hypothalamicâpituitaryâadrenal axis hormones (corticotropin-releasing hormone, adrenocorticotropic hormone (ACTH), cortisol) in stress-induced alopecia. This article also briefly discusses hormonal therapies, including 5-alpha-reductase inhibitors (finasteride, dutasteride), spironolactone, bicalutamide, estrogens, and others
Arterial Stiffness Parameters Correlate with Estimated Cardiovascular Risk in Humans: A Clinical Study
Arterial stiffness is said to be a novel predictor of cardiovascular events. This study investigated the correlation between arterial stiffness parameters and the estimated cardiovascular disease risk (RISK) in a Polish cohort of patients divided by age, sex, and body-mass index (BMI). The cross-sectional study enrolled 295 patients who met the inclusion criteria. Subjects were divided into three age groups, four weight groups, and by gender. The stiffness of the vessels was assessed by the measurement of the stiffness index (SI) and reflection index (RI). An individual 10-year RISK was calculated for each patient using the Heart Risk Calculator algorithm by the American Heart Association. A correlation between the SI and estimated RISK was observed (rS 0.42, p < 0.05). The strongest relationship was presented for women, the age group 40â54, and individuals with normal weight. The correlation between RI and calculated RISK was observed (rS 0.19, p < 0.05), the highest correlation was noticed for people aged 40â54 and obese. In conclusion, both SI and RI are correlated with estimated cardiovascular risk, however SI seems to be more useful than RI to predict the individual risk of future cardiovascular events. Both of these can be measured using non-invasive techniques, which demonstrates their potential utility in clinical practice
Anti-thyroidal peroxidase antibodies are associated with thyrotropin levels in hypothyroid patients and in euthyroid individuals
Objective
The study was designed to evaluate the relationship between thyroid antibodies and gland dysfunction, with the aim of finding a clinically useful threshold value of thyreoperoxidase antibodies, which could prove to be predictive for thyroid failure.
Material and Methods
The study was conducted on 99 women, ages ranging from 18â91 years (mean age: 45.5 ±17.0), were treated as outpatients in the Department of Endocrinology, Metabolism and Internal Medicine. Analysis of serum samples for TSH concentration and anti-TPO titers was conducted.
Results
The most common disorder was hypothyroidism. Anti-TPO titers above reference range values were observed in 35 patients (35.4%): 21 (60%) were hypothyroid and 11 (31.4 %) were euthyroid. The anti-TPO and TSH serum levels correlated both in patients with high thyroid antibody titers, and in the anti-TPO negative groups. To find the threshold value of anti- TPO that would help predict hypothyroidism, receiver operating curves were used. With this approach, TPO antibody titers over 17 IU/ml indicated hypothyroidism with a 90% sensitivity and 75% sensibility.
Conclusions
It can be postulated that the cutoff values of anti-TPO in the general population should be decreased in order to improve autoimmune thyroid disorder screening. Obviously, using that margin may lead initially to the detection of some false positive subjects. However, with lower cut-off values, more patients can be enrolled into thyroid follow-up groups. In this way, many people could avoid complications of undiagnosed, insidious thyroid failure