31 research outputs found

    Nevada Nuclear Waste Storage Investigations Project interim acceptance specifications for Defense Waste Processing Facility and West Valley Demonstration Project waste forms and canisterized waste

    Get PDF
    The waste acceptance specifications presented in this document represent the first stage of the Nevada Nuclear Waste Storage Investigations Project effort to establish specifications for the acceptance of waste forms for disposal at a nuclear waste repository in Yucca Mountain tuff. The only waste forms that will be dealt with in this document are the reprocessed waste forms resulting from solidification of the Savannah River Plant defense high level waste and the West Valley high level wastes. Specifications for acceptance of spent fuel will be covered in a separate document

    Post Emplacement Environment of Waste Packages

    Get PDF
    Experiments have been conducted as part of the Nevada Nuclear Waste Storage Investigations Project to determine the changes in water chemistry due to reaction of the Topopah Spring tuff with natural groundwater at temperatures up to 150{sup 0}C. The reaction extent has been investigated as a function of rock-to-water ratio, temperature, reaction time, physical state of the samples, and geographic location of the samples within the tuff unit. Results of these experiments will be used to provide information on the water chemistry to be expected if a high-level waste repository were to be constructed in the Topopah Spring tuff. 6 references, 5 figures, 1 table

    Spent fuel cladding corrosion under tuff repository conditions: initial observations

    Get PDF
    The Westinghouse Hanford Company program is investigating corrosion and stress corrosion cracking of Zircaloy-2 and 4 in two model tuff repository environments using an experimental approach in which the repository environment is reproduced as accurately as possible, including temperature, radiation field, water chemistry and materials associations. Post-experimental sample evaluation utilizes or will utilize sophisticated SEM/STEM, Auger surface analysis/ion milling, and trace element release to detect, locate and measure the effects of corrosion. The experiments themselves are being conducted using actual spent fuel and repository materials at repository conditions. The short experimental time (i.e., one year) is being compensated for by sensitive measuring techniques. Characterization of any corrosion found will be used to understand the mechanisms involved for extrapolation purposes. The initial evaluation of samples from two, six, and 12-month electrochemical corrosion experiments indicated no Zircaloy-4 corrosion at a detection sensitivity of 1 to 2 {mu}m of corrosion per year. To improve the sensitivity of the experiment, baseline conditions (e.g., beginning with a polished metal surface) will need to be established that are expected to make it possible to resolve corrosion on the scale of hundreds of angstroms. Examples are the development of such measurements as film depth determination via Auger surface analysis/ion milling and Zr and {sup 14}C released into the aqueous corrosion environment. Characterization of any corrosion found will be used to understand the mechanisms involved. This will allow extrapolation of results to predict cladding lifetime under repository conditions. 3 refs
    corecore