2 research outputs found
Investigation of current models of care for genetic heart disease in Australia: A national clinical audit
Background: This sub-study of the Australian Genomics Cardiovascular Genetic Disorders Flagship sought to conduct the first nation-wide audit in Australia to establish the current practices across cardiac genetics clinics.
Method: An audit of records of patients with a suspected genetic heart disease (cardiomyopathy, primary arrhythmia, autosomal dominant congenital heart disease) who had a cardiac genetics consultation between 1st January 2016 and 31 July 2018 and were offered a diagnostic genetic test.
Results: This audit included 536 records at multidisciplinary cardiac genetics clinics from 11 public tertiary hospitals across five Australian states. Most genetic consultations occurred in a clinic setting (90%), followed by inpatient (6%) and Telehealth (4%). Queensland had the highest proportion of Telehealth consultations (9% of state total). Sixty-six percent of patients had a clinical diagnosis of a cardiomyopathy, 28% a primary arrhythmia, and 0.7% congenital heart disease. The reason for diagnosis was most commonly as a result of investigations of symptoms (73%). Most patients were referred by a cardiologist (85%), followed by a general practitioner (9%) and most genetic tests were funded by the state Genetic Health Service (73%). Nationally, 29% of genetic tests identified a pathogenic or likely pathogenic gene variant; 32% of cardiomyopathies, 26% of primary arrhythmia syndromes, and 25% of congenital heart disease.
Conclusion: We provide important information describing the current models of care for genetic heart diseases throughout Australia. These baseline data will inform the implementation and impact of whole genome sequencing in the Australian healthcare landscape
A multitiered analysis platform for genome sequencing: Design and initial findings of the Australian Genomics Cardiovascular Disorders Flagship
Purpose: The Australian Genomics Cardiovascular Disorders Flagship was a national multidisciplinary collaboration. It aimed to investigate the feasibility of genome sequencing (GS) and functional genomics to resolve variants of uncertain significance (VUS) in the clinical management of patients and families with cardiomyopathies, primary arrhythmias, and congenital heart disease (CHD). Methods: Between April 2019 and December 2021, 600 probands meeting cardiovascular disorder criteria from 17 cardiology and genetics clinics across Australia were enrolled in the Flagship and underwent GS. The Flagship adopted a tiered approach to GS analysis. Tier 1 analysis assessed genes with established clinical validity for each cardiovascular condition. Tier 2 analysis assessed lesser-evidenced research-based genes. Tier 3 analysis assessed the functional impact of VUS that remained after tier 1 and tier 2 analysis. Results: Overall, a pathogenic or likely pathogenic variant was identified in 41% of participants with a cardiomyopathy, 40% with an arrhythmia syndrome, and 15% with a familial CHD/CHD+Extra Cardiac Anomalies. A VUS outcome ranged from 13% for arrhythmias to 34% for CHD/CHD+Extra Cardiac Anomalies participants. Tier 2 research analysis identified a likely pathogenic/pathogenic variant for a further 15 participants and a VUS for an additional 15 participants. Conclusion: The Flagship successfully facilitated a model of care that harnesses clinical GS and functional genomics for the resolution of VUS in the clinical setting. This valuable data set can be used to inform clinical practice and facilitate research into the future