57 research outputs found

    Inducing the cosmological constant from five-dimensional Weyl space

    Full text link
    We investigate the possibility of inducing the cosmological constant from extra dimensions by embedding our four-dimensional Riemannian space-time into a five-dimensional Weyl integrable space. Following approach of the induced matter theory we show that when we go down from five to four dimensions, the Weyl field may contribute both to the induced energy-tensor as well as to the cosmological constant, or more generally, it may generate a time-dependent cosmological parameter. As an application, we construct a simple cosmological model which has some interesting properties.Comment: 7 page

    General Relativistic Singularity-Free Cosmological Model

    Full text link
    We "explain", using a Classical approach, how the Universe was created out of "nothing", i.e., with no input of initial energy nor mass. The inflationary phase, with exponential expansion, is accounted for, automatically, by our equation of state for the very early Universe. This is a Universe with no-initial infinite singularity of energy density.Comment: Astrophysics and Space Science, 321,157 (2009

    Polarization of AGN in UV Spectral Range

    Full text link
    We present the review of some new problems in cosmology and physics of stars in connection with future launching of WSO. We discuss three problems. UV observations of distant z > 6 quasars allow to obtain information on the soft < 1 KeV X-ray radiation of the accretion disk around a supermassive black hole because of its cosmological redshift. Really the region of X-ray radiation is insufficiently investigated because of high galactic absorption. In a result one will get important information on the reionization zone of the Universe. Astronomers from ESO revealed the effect of alignment of electric vectors of polarized QSOs. One of the probable mechanism of such alignment is the conversion of QSO radiation into low mass pseudoscalar particles (axions) in the extragalactic magnetic field. These boson like particles have been predicted by new SUSY particle physics theory. Since the probability of such conversion is increasing namely in UV spectral range one can expect the strong correlation between UV spectral energy distribution of QSO radiation and polarimetric data in the optical range. In the stellar physics one of the interesting problems is the origin of the X-ray sources with super Eddington luminosities. The results of UV observations of these X-ray sources will allow to find the origin of these sources as accreting intermediate mass black holes.Comment: 6 pages, 3 figure

    The Collapse of Large Extra Dimensions

    Get PDF
    In models of spacetime that are the product of a four-dimensional spacetime with an ``extra'' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided.Comment: Uses revtex

    Teleparallel Equivalent of Non-Abelian Kaluza-Klein Theory

    Get PDF
    Based on the equivalence between a gauge theory for the translation group and general relativity, a teleparallel version of the non-abelian Kaluza-Klein theory is constructed. In this theory, only the fiber-space turns out to be higher-dimensional, spacetime being kept always four-dimensional. The resulting model is a gauge theory that unifies, in the Kaluza-Klein sense, gravitational and gauge fields. In contrast to the ordinary Kaluza-Klein models, this theory defines a natural length-scale for the compact sub-manifold of the fiber space, which is shown to be of the order of the Planck length.Comment: Revtex4, 7 pages, no figures, to appear in Phys. Rev.

    Exact Solutions of Five Dimensional Anisotropic Cosmologies

    Get PDF
    We solve the five dimensional vacuum Einstein equations for several kinds of anisotropic geometries. We consider metrics in which the spatial slices are characterized as Bianchi types-II and V, and the scale factors are dependent both on time and a non-compact fifth coordinate. We examine the behavior of the solutions we find, noting for which parameters they exhibit contraction over time of the fifth scale factor, leading naturally to dimensional reduction. We explore these within the context of the induced matter model: a Kaluza-Klein approach that associates the extra geometric terms due to the fifth coordinate with contributions to the four dimensional stress-energy tensor.Comment: 11 page

    A possible Reinterpretation of Einstein's Equations

    Full text link
    In this paper, we first review Huei's formulation in which it is shown that the linearized Einstein equations can be written in the same form as the Maxwell equations. We eliminate some imperfections like the scalar potential which is ill linked to the electric-type field, the Lorentz-type force which is obtained with a time independence restriction and the undesired factor 4 which appears in the magnetic-type part. Second, from these results and in the light of a recent work by C.C. Barros, we propose an extension of the equivalence principle and we suggest a new interpretation for Einstein's equations by showing that the electromagnetic Maxwell equations can be derived from a new version of Einstein's ones.Comment: 11 pages, no figure

    The Behavior of Kasner Cosmologies with Induced Matter

    Get PDF
    We extend the induced matter model, previously applied to a variety of isotropic cases, to a generalization of Bianchi type-I anisotropic cosmologies. The induced matter model is a 5D Kaluza-Klein approach in which assumptions of compactness are relaxed for the fifth coordinate, leading to extra geometric terms. One interpretation of these extra terms is to identify them as an ``induced matter'' contribution to the stress-energy tensor. In similar spirit, we construct a five dimensional metric in which the spatial slices possess Bianchi type-I geometry. We find a set of solutions for the five dimensional Einstein equations, and determine the pressure and density of induced matter. We comment on the long-term dynamics of the model, showing that the assumption of positive density leads to the contraction over time of the fifth scale factor.Comment: 14 page
    • …
    corecore