86 research outputs found

    Location-Dependent Impacts of Resource Inertia on Power System Oscillations

    Get PDF
    Inertial responses are seen by the system as the injection or withdrawal of electrical energy, corresponding to a change of frequency. The inertia of a machine primarily contributes to the power system transient stability. Oscillations are always present in the bulk power system due to the electromechanical nature of the grid. Poorly damped oscillations may cause system instability. Thus, this paper aims to study inertia\u27s impacts on system primary frequency response, in particular on system oscillation modes. Both transient stability simulations and modal analysis are performed to provide insights into the extent to which inertia and its location influence the system oscillation behavior. Simulation results using both a small-scale test system and a large-scale synthetic network dynamic model are presented to verify the locational impacts of resource inertia

    Application of Large-Scale Synthetic Power System Models for Energy Economic Studies

    Get PDF
    Due to information confidentiality issues, there is limited access to actual power system models that represent features of actual power grids for teaching, training, and research purposes. The authors\u27 previous work describes the process of creating synthetic transmission networks, with statistics similar to those of actual power grids. Thus, this paper outlines a systematic methodology to augment the synthetic network base case for energy economic studies. The key step is to determine generator cost models by fuel type and capacity. Based on statistics summarized from the actual grids, two approaches are proposed to assign coefficients to generator cost models. To illustrate the proposed creation procedure, we describe the construction of a synthetic model for Electric Reliability Council of Texas footprint. Simulation results are presented to verify that the created test system is able to represent the behavior of actual power systems

    Key Technical Challenges for the Electric Power Industry and Climate Change

    Get PDF
    This paper, prepared by the Climate Change Technology Subcommittee, a subcommittee of the Power and Energy Society Energy Development and Power Generation Committee, identifies key technical issues facing the electric power industry, related to global climate change. The technical challenges arise from: 1) impacts on system operating strategies, configuration, and expansion plans of emission-reducing technologies; 2) power infrastructure response to extreme weather events; 3) effects of government policies including an expanded use of renewable and alternative energy technologies; and 4) impacts of market rules on power system operation. Possible lessons from other industries\u27 responses to climate change are explored
    corecore