5 research outputs found

    The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago

    Get PDF
    Background: The territorial fishing zones of Australia and Indonesia are contiguous to the north of Australia in the Timor and Arafura Seas and in the Indian Ocean to the north of Christmas Island. The area surrounding the shared boundary consists of a variety of bio-diverse marine habitats including shallow continental shelf waters, oceanic trenches and numerous offshore islands. Both countries exploit a variety of fisheries species, including whaler (Carcharhinus spp.) and hammerhead sharks (Sphyrna spp.). Despite their differences in social and financial arrangements, the two countries are motivated to develop complementary co-management practices to achieve resource sustainability. An essential starting point is knowledge of the degree of population subdivision, and hence fisheries stock status, in exploited species. Results: Populations of four commercially harvested shark species (Carcharhinus obscurus, Carcharhinus sorrah, Prionace glauca, Sphyrna lewini) were sampled from northern Australia and central Indonesia. Neutral genetic markers (mitochondrial DNA control region sequence and allelic variation at co-dominant microsatellite loci) revealed genetic subdivision between Australian and Indonesian populations of C. sorrah. Further research is needed to address the possibility of genetic subdivision among C. obscurus populations. There was no evidence of genetic subdivision for P. glauca and S. lewini populations, but the sampling represented a relatively small part of their distributional range. For these species, more detailed analyses of population genetic structure is recommended in the future. Conclusion: Cooperative management between Australia and Indonesia is the best option at present for P. glauca and S. lewini, while C. sorrah and C. obscurus should be managed independently. On-going research on these and other exploited shark and ray species is strongly recommended. Biological and ecological similarity between species may not be a predictor of population genetic structure, so species-specific studies are recommended to provide new data to assist with sustainable fisheries management

    Genetic and phenotypic diversity in the wedgefish Rhynchobatus australiae, a threatened ray of high value in the shark fin trade

    No full text
    Rhynchobatus spp. (wedgefishes) are large benthopelagic shark-like rays with fins that are highly prized in the international shark fin trade. They are among the most threatened groups of sharks and rays globally. While Rhynchobatus spp. are known to be under considerable fishing pressure as a group, taxonomic confusion among species within the genus has compromised species-specific fishery and demographic data that are urgently needed for developing effective management strategies. Rhynchobatus australiae (Whitley, 1939) is a large Indo-West Pacific species reaching 2 to 3 m that is classified as Vulnerable on the IUCN Red List. This study combines new empirical data from field surveys with data obtained from verified reference specimens to investigate genetic and phenotypic variation in R. australiae and its relative incidence in fisheries. R. australiae dominated Rhynchobatus catch in fisheries surveys across Southeast Asia, and was the most commonly recorded species of the genus in Australia (94% and 58% of captures respectively, n = 207). Study specimens were consistent with a single species with moderate spatial mtDNA variation (Phi(ST) = 0.198, p < 0.0001). We show that R. australiae can be reliably differentiated from other Indo-Pacific species with nadh2 (1044bp), and a section of the control region (456bp) short enough to amplify DNA from processed fins in international trade. We document aspects of morphological variability to assist in the description of external characters that differentiate this species. This is the first range-wide intraspecific study on any wedgefish species, and provides the most complete synthesis of mtDNA data to date for identifying Rhynchobatus fins in the global shark fin trade

    Identification of small juvenile scombrids from northwest tropical Australia using mitochondrial DNA cytochrome b sequences

    No full text
    Small juveniles of the nine species of scombrids in Australian waters are morphologically similar to one another and, consequently, difficult to identify to species level. We show that the sequence of the mitochondrial DNA cytochrome b gene region is a powerful tool for identification of these young fish. Using this method, we identified 50 juvenile scombrids collected from Exmouth Bay, Western Australia. Six species of scombrids were apparent in this sample of fish: narrow-barred Spanish mackerel (Scomberomorus commerson), Indian mackerel (Rastrelliger kanagurta), frigate tuna (Auxis thazard), bullet tuna (Auxis rochei), leaping bonito (Cybiosarda elegans), and kawakawa (Euthynnus affinis). The presence of Indian mackerel, frigate tuna, leaping bonito, and kawakawa is the first indication that coastal waters may be an important spawning habitat for these species, although offshore spawning may also occur. The occurrence of small juvenile S. commerson was predicted from the known spawning patterns of that species, but other mackerel species (Scomberomorus munroi, Scomberomorus queenslandicus, Scomberomorus semifasiciatus) likely to be spawning during the sampling period were not detected among the 50 small juveniles analyzed here
    corecore