10 research outputs found

    Bridging Systems: Open Problems for Countering Destructive Divisiveness across Ranking, Recommenders, and Governance

    Full text link
    Divisiveness appears to be increasing in much of the world, leading to concern about political violence and a decreasing capacity to collaboratively address large-scale societal challenges. In this working paper we aim to articulate an interdisciplinary research and practice area focused on what we call bridging systems: systems which increase mutual understanding and trust across divides, creating space for productive conflict, deliberation, or cooperation. We give examples of bridging systems across three domains: recommender systems on social media, collective response systems, and human-facilitated group deliberation. We argue that these examples can be more meaningfully understood as processes for attention-allocation (as opposed to "content distribution" or "amplification") and develop a corresponding framework to explore similarities - and opportunities for bridging - across these seemingly disparate domains. We focus particularly on the potential of bridging-based ranking to bring the benefits of offline bridging into spaces which are already governed by algorithms. Throughout, we suggest research directions that could improve our capacity to incorporate bridging into a world increasingly mediated by algorithms and artificial intelligence.Comment: 40 pages, 11 figures. See https://bridging.systems for more about this wor

    Folding orthogonal structures from universal hinge patterns

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 57) and index.We investigate a new approach to origami design using simple universal hinge patterns where the crease patterns for different shapes are just different subsets of a common hinge pattern. Several algorithms have previously been developed to design folded states for particular shapes, but they require a different crease pattern for each shape. Our motivations include the development of robotic "origami transformers," artistic tools, and theoretical insights. We show how to compose "cube gadgets" to fold any N-cube polycube from an O(N) x O(N) rectangle of paper, using only O(N 2 ) time to compute the parameters of the unambiguous folding sequence. We also describe extensions of our basic algorithm to larger classes of shapes with improved paper efficiency. Finally, we demonstrate that an implementation of this technique can actually be used to partially automate geometric paper folding.by Aviv Ovadya.M.Eng

    What’s Worse Than Fake News? The Distortion Of Reality Itself

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143712/1/npqu12143.pd

    Democratising AI: Multiple Meanings, Goals, and Methods

    Full text link
    Numerous parties are calling for the democratisation of AI, but the phrase is used to refer to a variety of goals, the pursuit of which sometimes conflict. This paper identifies four kinds of AI democratisation that are commonly discussed: (1) the democratisation of AI use, (2) the democratisation of AI development, (3) the democratisation of AI profits, and (4) the democratisation of AI governance. Numerous goals and methods of achieving each form of democratisation are discussed. The main takeaway from this paper is that AI democratisation is a multifarious and sometimes conflicting concept that should not be conflated with improving AI accessibility. If we want to move beyond ambiguous commitments to democratising AI, to productive discussions of concrete policies and trade-offs, then we need to recognise the principal role of the democratisation of AI governance in navigating tradeoffs and risks across decisions around use, development, and profits.Comment: Changed second author affiliation; added citation to section 5.2; edit to author contribution statemen

    Deliberative Technology for Alignment

    Full text link
    For humanity to maintain and expand its agency into the future, the most powerful systems we create must be those which act to align the future with the will of humanity. The most powerful systems today are massive institutions like governments, firms, and NGOs. Deliberative technology is already being used across these institutions to help align governance and diplomacy with human will, and modern AI is poised to make this technology significantly better. At the same time, the race to superhuman AGI is already underway, and the AI systems it gives rise to may become the most powerful systems of the future. Failure to align the impact of such powerful AI with the will of humanity may lead to catastrophic consequences, while success may unleash abundance. Right now, there is a window of opportunity to use deliberative technology to align the impact of powerful AI with the will of humanity. Moreover, it may be possible to engineer a symbiotic coupling between powerful AI and deliberative alignment systems such that the quality of alignment improves as AI capabilities increase

    The tension between openness and prudence in AI research

    No full text
    This paper explores the tension between openness and prudence in AI research, evident in two core principles of the Montréal Declaration for Responsible AI. While the AI community has strong norms around open sharing of research, concerns about the potential harms arising from misuse of research are growing, prompting some to consider whether the field of AI needs to reconsider publication norms. We discuss how different beliefs and values can lead to differing perspectives on how the AI community should manage this tension, and explore implications for what responsible publication norms in AI research might look like in practice
    corecore