6 research outputs found

    Scalable Quantum Monte Carlo with Direct-Product Trial Wave Functions

    Full text link
    The computational demand posed by applying multi-Slater determinant trials in phaseless auxiliary-field quantum Monte Carlo methods (MSD-AFQMC) is particularly significant for molecules exhibiting strong correlations. Here, we propose using direct-product wave functions as trials for MSD-AFQMC, aiming to reduce computational overhead by leveraging the compactness of multi-Slater determinant trials in direct-product form (DP-MSD). This efficiency arises when the active space can be divided into non-coupling subspaces, a condition we term "decomposable active space". By employing localized-active space self-consistent field wave functions as an example of such trials, we demonstrate our proposed approach in various molecular systems. Our findings indicate that the compact DP-MSD trials can reduce computational costs substantially, by up to 36 times for the \ce{C2H6N4} molecule where the two double bonds between nitrogen \ce{N=N} are clearly separated by a \ce{C-C} single bond, while maintaining accuracy when active spaces are decomposable. However, for systems where these active subspaces strongly couple, a scenario we refer to as "strong subspace coupling", the method's accuracy decreases compared to that achieved with a complete active space approach. We anticipate that our method will be beneficial for systems with non-coupling to weakly-coupling subspaces that require local multireference treatments.Comment: 12 pages, 9 figure

    Protocols for creating and distilling multipartite GHZ states with Bell pairs

    Get PDF
    The distribution of high-quality Greenberger–Horne–Zeilinger (GHZ) states is at the heart of many quantum communication tasks, ranging from extending the baseline of telescopes to secret sharing. They also play an important role in error-correction architectures for distributed quantum computation, where Bell pairs can be leveraged to create an entangled network of quantum computers. We investigate the creation and distillation of GHZ states out of nonperfect Bell pairs over quantum networks. In particular, we introduce a heuristic dynamic programming algorithm to optimize over a large class of protocols that create and purify GHZ states. All protocols considered use a common framework based on measurements of nonlocal stabilizer operators of the target state (i.e., the GHZ state), where each nonlocal measurement consumes another (nonperfect) entangled state as a resource. The new protocols outperform previous proposals for scenarios without decoherence and local gate noise. Furthermore, the algorithms can be applied for finding protocols for any number of parties and any number of entangled pairs involved

    Protocols for creating and distilling multipartite GHZ states with Bell pairs (pre-calculated data)

    No full text
    The distribution of high quality Greenberger-Horne-Zeilinger (GHZ) states is at the heart of many quantum communication tasks, ranging from extending the baseline of telescopes to secret sharing. They also play an important role in error-correction architectures for distributed quantum computation, where Bell pairs can be leveraged to create an entangled network of quantum computers. We investigate the creation and distillation of GHZ states out of non-perfect Bell pairs over quantum networks. In particular, we introduce an algorithm based on dynamic programming to optimize over a large class of protocols that create and purify GHZ states. All protocols considered use a common framework based on measurements of non-local stabilizer operators of the target state (i.e., the GHZ state), where each non-local measurement consumes another (non-perfect) entangled state as a resource. The new protocols outperform previous proposals for scenarios without decoherence and local gate noise, by reducing the resources required to make high quality GHZ states. Furthermore, the algorithms can be applied for finding protocols for any number of parties and any number of entangled pairs involved.</div

    Reversibly switchable DNA nanocompartment on surfaces

    No full text
    Biological macromolecules have been used to fabricate many nanostructures, biodevices and biomimetics because of their physical and chemical properties. But dynamic nanostructure and biomachinery that depend on collective behavior of biomolecules have not been demonstrated. Here, we report the design of DNA nanocompartments on surfaces that exhibit reversible changes in molecular mechanical properties. Such molecular nanocompartments are used to encage molecules, switched by the collective effect of Watson–Crick base-pairing interactions. This effect is used to perform molecular recognition. Furthermore, we found that ‘fuel’ strands with single-base variation cannot afford an efficient closing of nanocompartments, which allows highly sensitive label-free DNA array detection. Our results suggest that DNA nanocompartments can be used as building blocks for complex biomaterials because its core functions are independent of substrates and mediators

    LRIK interacts with the Ku70–Ku80 heterodimer enhancing the efficiency of NHEJ repair

    No full text
    Despite recent advances in our understanding of the function of long noncoding RNAs (lncRNAs), their roles and functions in DNA repair pathways remain poorly understood. By screening a panel of uncharacterized lncRNAs to identify those whose transcription is induced by double-strand breaks (DSBs), we identified a novel lncRNA referred to as LRIK that interacts with Ku, which enhances the ability of the Ku heterodimer to detect the presence of DSBs. Here, we show that depletion of LRIK generates significantly enhanced sensitivity to DSB-inducing agents and reduced DSB repair efficiency. In response to DSBs, LRIK enhances the recruitment of repair factors at DSB sites and facilitates γH2AX signaling. Our results demonstrate that LRIK is necessary for efficient repairing DSBs via nonhomologous end-joining pathway
    corecore