41 research outputs found
Bone Fractures under the Microscope. An Experimental Approach to Mid-Upper Paleolithic Faunal Remains
This is the final version. Available on open access from the Slovenská Akadémia Vied via the DOI in this recordBone fragmentation results from different natural processes or various activities employed by several taphonomic agents. However, it may also represent direct evidence of deliberate human activity connected to the exploitation of animal resources throughout the Paleolithic period. Extensive long mammal bone fragmentation research resulted in last decades into description of individual fracture characteristics reflecting the background of fragmentation process (Johnson 1985; Outram 2001). The features combine macroscopic traits such as angle, an outline, and surface texture of the fracture. However, as the experimental works show, the response of bone on a gross scale is in great extent given by microstructure and its state of preservation directly correlating with the biomechanical properties (Currey 2012; Gifford-Gonzales 2018). The paper aims on testing (1) whether the microscopic features correlate with described macroscale differences or even (2) are able to distinguish features with macroscopic overlaps but of different origin. We have thus tested and applied two microscopic methods on two experimental assemblages with documented fragmentation conditions. By the scanning electron microscopy (SEM) we observed irregularities and micro-fractures in bone fracture surface (FS). They proved to be in certain aspect specific for a given state of bone preservation. Transmitted light microscopy mapped the abundance of micro-cracking, its characteristic features in relation to bone preservation and specific way of fragmentation. The histological thin-sections (HTS) revealed a variety of micro-cracking penetrating the FS, but they did not prove any differentiating pattern among observed experimental sets. A range of different surface profiles was documented, the profile morphology seems to be characteristic for individual bone preservation states. If compared to macroscopic method (FFI), the study of microscopic features in their presented extent did not allow us to differentiate further between fractures. Finally, we undertook an example application of the macroscopic fracture analysis on settlement areas from the Gravettian site Pavlov I (Czech Republic) and we discuss the potential of suggested micro-methods in taphonomic analysis dealing with animal body manipulation and exploitation.Faculty of Arts of the University of Hradec Králov
Recommended from our members
Magnetic moments at Ness of Brodgar
YesThe magnetic analysis of material from the Ness of Brodgar has formed part of the research programme at
the site, with annual collection of samples, since 2012.1 Primarily concerned with dating and with the refinement
of site chronologies, magnetic analysis is also being used to address questions regarding the nature of
resource exploitation and the use of space within buildings. This chapter presents the results of the research
undertaken so far and highlights the areas that are likely to prove informative in future
Riverbed sediments buffer phosphorus concentrations downstream of sewage treatment works across the River Wensum catchment, UK
Purpose: Wastewater effluent discharged into rivers from sewage treatment works (STWs) represents one of the most important point sources of soluble reactive phosphorus (SRP) pollution and is a major driver of freshwater eutrophication. In this study, we assess the ability of riverbed sediments to act as a self-regulating buffering system to reduce SRP dissolved in the water column downstream of STW outflows. Materials and methods: River water and riverbed sediment samples were collected from 10 tributary outlets across the River Wensum catchment, Norfolk, UK, at monthly intervals between July and October 2016, such that 40 sediment and 40 water samples were collected in total. Of these locations, five were located downstream of STWs and five were on tributaries without STWs. Dissolved SRP concentrations were analysed and the Equilibrium Phosphorus Concentration (EPC0) of each sediment sample was measured to determine whether riverbed sediments were acting as net sources or sinks of SRP. Results and discussion: The mean SRP concentration downstream of STWs (382 µg P L-1) was double that of sites without a STW (185 µg P L-1), whilst the mean EPC0 for effluent impacted sites (105 µg P L-1) was 70% higher than that recorded at unaffected sites (62 µg P L-1). Regardless of STW influence, riverbed sediments across all 10 sites almost always acted as net sinks for SRP from the overlying water column. This was particularly true at sites downstream of STWs which displayed enhanced potential to buffer the river against increases in SRP released in sewage effluent. Conclusions: Despite EPC0 values revealing riverbed sediments were consistently acting as sinks for SRP, elevated SRP concentrations downstream of STWs clearly demonstrate the sediments have insufficient SRP sorption capacity to completely buffer the river against effluent discharge. Consequently, SRP concentrations across the catchment continue to exceed recommended standards for good chemical status, thus emphasising the need for enhanced mitigation efforts at STWs to minimise riverine phosphorus loading
The origins and spread of domestic horses from the Western Eurasian steppes
Analysis of 273 ancient horse genomes reveals that modern domestic horses originated in the Western Eurasian steppes, especially the lower Volga-Don region.Domestication of horses fundamentally transformed long-range mobility and warfare(1). However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling(2-4) at Botai, Central Asia around 3500 bc(3). Other longstanding candidate regions for horse domestication, such as Iberia(5) and Anatolia(6), have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association(7) between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc(8,9) driving the spread of Indo-European languages(10). This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture(11,12).Descriptive and Comparative Linguistic
The origins and spread of domestic horses from the Western Eurasian steppes
Domestication of horses fundamentally transformed long-range mobility and warfare. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling at Botai, Central Asia around 3500 bc. Other longstanding candidate regions for horse domestication, such as Iberia and Anatolia, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc driving the spread of Indo-European languages. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture
The Origins and Spread of Domestic Horses from the Western Eurasian Steppes
Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2–4 at Botai, Central Asia around 3500 bc3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture11,12. © 2021, The Author(s).We thank all members of the AGES group at CAGT. We are grateful for the Museum of the Institute of Plant and Animal Ecology (UB RAS, Ekaterinburg) for providing specimens. The work by G. Boeskorov is done on state assignment of DPMGI SB RAS. This project was supported by the University Paul Sabatier IDEX Chaire d’Excellence (OURASI); Villum Funden miGENEPI research programme; the CNRS ‘Programme de Recherche Conjoint’ (PRC); the CNRS International Research Project (IRP AMADEUS); the France Génomique Appel à Grand Projet (ANR-10-INBS-09-08, BUCEPHALE project); IB10131 and IB18060, both funded by Junta de Extremadura (Spain) and European Regional Development Fund; Czech Academy of Sciences (RVO:67985912); the Zoological Institute ZIN RAS (АААА-А19-119032590102-7); and King Saud University Researchers Supporting Project (NSRSP–2020/2). The research was carried out with the financial support of the Russian Foundation for Basic Research (19-59-15001 and 20-04-00213), the Russian Science Foundation (16-18-10265, 20-78-10151, and 21-18-00457), the Government of the Russian Federation (FENU-2020-0021), the Estonian Research Council (PRG29), the Estonian Ministry of Education and Research (PRG1209), the Hungarian Scientific Research Fund (Project NF 104792), the Hungarian Academy of Sciences (Momentum Mobility Research Project of the Institute of Archaeology, Research Centre for the Humanities); and the Polish National Science Centre (2013/11/B/HS3/03822). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (grant agreement 797449). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements 681605, 716732 and 834616)