4 research outputs found

    Short-term residual effects of occasional tillage on crop performance, soil water, and water-use efficiency in a 10-year no-till system under a dry Mediterranean climate

    Get PDF
    Conservation Agriculture is a farming system based on no mechanical soil disturbance, permanent soil cover, and crop diversification. A study was carried out in an on-farm field trial set up in Meknes (Morocco) under a long-term no-till (NT) system to evaluate the residual effect of one-time occasional tillage (OT) on crop performance, soil water, and water-use efficiency (WUE) one and two years after OT implementation. Shallow and deep options of OT were compared with common NT practices (with crop residue retention and with crop residue removal) for two consecutive seasons of 2021–2022 (year 1) and 2022–2023 (year 2). The four tillage practices were implemented in November 2020. Three crops were studied each year: durum wheat (Triticum durum), faba bean (Vicia faba minor), and chickpea (Cicer arietinum) all grown under NT in both the years and arranged in four crop rotations. Our findings show that grain yield of wheat and chickpea was negatively affected by OT for all years considered. In wheat, there was a grain yield loss of 18 and 20% for shallow and deep OT, respectively compared to NT with crop residue retention. In chickpea, the grain yield loss was as high as 47 and 49% for shallow and deep OT, respectively. Average soil water storage measured at 0–60 cm at sowing was also lower in deep OT (133 mm) compared to NT with crop residue retention (151 mm) for all years and rotations considered. Yet, in wheat year 1, deep OT slightly improved soil water content at 30 cm depth compared to NT treatments. The comparison of WUE between treatments showed that, under NT with crop residue retention, the crops produced more grain and aboveground biomass per mm of water. Wheat/faba bean rotation had a greater grain yield and WUE (all years considered) and overall greater soil water content (year 1), compared to the wheat/chickpea rotation. The results suggest that the effects of OT on crop performance and water productivity in the short term can be adverse. On the other hand, grain yield of wheat can be improved by a judicious choice of legume to be used as a preceding crop

    Power shrinkage—curvelet domain image denoising using a new scale-dependent shrinkage function

    No full text
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Image processing and analysis algorithms are at the heart of applications in various scientific fields, such as medical diagnosis, military imaging, and astronomy. However, images are typically exposed to noise contamination during their acquisition and transmission. In this paper, we explore recent advancements in image denoising using curvelet domain shrinkage and present a novel scale-dependent shrinkage function, which we call power shrinkage, to enhance restored image quality. Experimental results confirm our proposed method to perform better than classical thresholding and to outperform recent state-of-the-art approaches in denoising different types of noises including speckle, Poisson and additive white Gaussian noise

    Influence of Density and Water Content on The Thermal Diffusivity of Wood Chips

    No full text
    The use of agro-industrial residues are currently experiencing an undeniable revival of interest in developing fully renewable insulation materials, that can be competitive in price and performance, in addition of low embodied energy. Among these vegetable waste materials; wood chips. These latter are light, compressible and very sensitive to water, due to their highly porous structure, which constantly modifies their thermal properties. The main objective of this study is to examine the influence of moisture content and density on the thermal diffusivity of wood chips, using the flash method. Four theoretical models were used to identify the thermal diffusivity. The results obtained show a decrease in thermal diffusivity with an increase in wood chips density. Furthermore, moisture content has an influence on thermal diffusivity. The experimental results show fluctuations with a slight decrease in thermal diffusivity with a maximum corresponding to a moisture content value Wm

    Chemical Composition, Antifungal and Anti-Biofilm Activities of Volatile Fractions of Convolvulus althaeoides L. Roots from Tunisia

    No full text
    The antifungal drugs currently available and mostly used for the treatment of candidiasis exhibit the phenomena of toxicity and increasing resistance. In this context, plant materials might represent promising sources of antifungal agents. The aim of this study is to evaluate for the first time the chemical content of the volatile fractions (VFs) along with the antifungal and anti-biofilm of Convolvulus althaeoides L. roots. The chemical composition was determined by gas chromatography coupled to a flame ionization detector and mass spectrometry. In total, 73 and 86 chemical compounds were detected in the n-hexane (VF1) and chloroform (VF2) fractions, respectively. Analysis revealed the presence of four main compounds: n-hexadecenoic acid (29.77%), 4-vinyl guaiacol (12.2%), bis(2-ethylhexyl)-adipate (9.69%) and eicosane (3.98%) in the VF extracted by hexane (VF1). n-hexadecenoic acid (34.04%), benzyl alcohol (7.86%) and linoleic acid (7.30%) were the main compounds found in the VF extracted with chloroform (VF2). The antifungal minimum inhibitory concentrations (MICs) of the obtained fractions against Candida albicans, Candida glabrata and Candida tropicalis were determined by the micro-dilution technique and values against Candida spp. ranged from 0.87 to 3.5 mg/mL. The biofilm inhibitory concentrations (IBF) and sustained inhibition (BSI) assays on C. albicans, C. glabrata and C. tropicalis were also investigated. The VFs inhibited biofilm formation up to 0.87 mg/mL for C. albicans, up to 1.75 mg/mL against C. glabrata and up to 0.87 mg/mL against C. tropicalis. The obtained results highlighted the synergistic mechanism of the detected molecules in the prevention of candidosic biofilm formation
    corecore