2 research outputs found
Electron-ion inverse bremsstrahlung absorption in magnetized fusion plasma
Magneto-inertial fusion (MIF) is an approach for thermonuclear fusion. It consists in applying a strong magnetic field to the inertial-fusion plasma, with the role of the magnetic field being to limit the diffusion of the formed plasma during the impact of an intense laser pulse with a target containing the thermonuclear fuel, as well as the confinement alpha particles produced by the fusion reaction. This allows the reduction of energy loss and improves compression conditions. In this paper we are interested in the study of the electron-ion inverse bremsstrahlung absorption (IBA) of the laser energy in magnetized plasma in the MIF frame. In addition, we apply the derived formula to calculate the absorption in magnetic fusion plasma heated by microwave. We use the Fokker-Planck-Maxwell theory to calculate the IBA explicitly in magnetized plasma. Scaling laws for IBA in MIF plasma and for magnetic confinement plasma are established. The numerical treatment of the model equations shows the influence of the magnetic field and the polarization of the wave on the absorption
Nonlinear inverse bremsstrahlung absorption in magnetized laser-fusion plasma
The nonlinear inverse bremsstrahlung absorption (NLIBA) in magnetized plasma has been investigated within the framework of relativistic kinetic theory. Collisions are described by an improved Krook collision term that accounts for relativistic effects and the Landau microscopic collision form. The non-linearity considered in this paper arises from the anisotropy in electron momentum space in the plasma that is heated by an intense laser pulse. The absorption is explicitly expressed, under reasonable approximations, as a function of the plasma, laser pulse, and magnetic field parameters. Numerical treatment of the model equations shows that absorption increases with laser intensity but decreases with plasma temperature and laser wavelength. It has been shown that the polarization of the laser wave has a significant influence on absorption for high-intense magnetic fields used in magneto-inertial fusion (MIF) experiments. Nonlinear effects clearly reduce absorption for laser intensities comparable to the characteristic intensity, I0=me2c3ε0ωL2/e2, where me is the electron mass, c is the speed of light in vacuum, ɛ0 is the electric permittivity of free space, ωL is the laser wave frequency, and e is the elementary electric charge. Within the intensity I ≪ I0 and laser wavelength in the micro-meter range (λ ∼ μm), relativistic effects appear in the third order of absorption. These findings allow for the optimization of laser pulse parameters to achieve efficient absorption in MIF experiments