37 research outputs found

    Quantum homodyne tomography of a two-photon Fock state

    Full text link
    We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed non-degenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.Comment: 4 pages, 6 figures Revised version : corrected typo and reference

    Photonique quantique / Quantum photonics

    Get PDF
    Recherche Page web : https://www.college-de-france.fr/site/young-team-incubator/Presentation__3.htm

    Increasing entanglement between Gaussian states by coherent photon subtraction

    Full text link
    We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a non-degenerate parametric amplifier, produces delocalized states with negative Wigner functions and complex structures, more entangled than the initial states in terms of negativity. The experimental results are in very good agreement with the theoretical predictions

    Dispersive optical nonlinearities in an EIT-Rydberg medium

    Full text link
    We investigate dispersive optical nonlinearities that arise from Rydberg excitation blockade in cold Rydberg gases. We consider a two-photon transition scheme and study the non-linear response to a weak optical probe in presence of a strong control beam. For very low probe fields, the dominant nonlinearities are of the third order and they can be exactly evaluated in a steady state regime. In a more general case, the change in average atomic populations and coherences due to Rydberg interactions can be characterized by properly defined scaling parameters, which are generally complex numbers but in certain situations take the usual meaning of the number of atoms in a blockade sphere. They can be used in a simple "universal scaling" formula to determine the dispersive optical nonlinearity of the medium. We also develop a novel technique to account for the Rydberg interaction effects, by simplifying the treatment of nonlocal interaction terms, the so-called collisional integrals. We find algebraic relations that only involve two-body correlations, which can be solved numerically. All average populations and coherences are then obtained straightforwardly.Comment: 9 pages, 4 figure

    Generating non-Gaussian states using collisions between Rydberg polaritons

    Full text link
    We investigate theoretically the deterministic generation of quantum states with negative Wigner functions, by using giant non-linearities due to collisional interactions between Rydberg polaritons. The state resulting from the polariton interactions may be transferred with high fidelity into a photonic state, which can be analyzed using homodyne detection followed by quantum tomography. Besides generating highly non-classical states of the light, this method can also provide a very sensitive probe for the physics of the collisions involving Rydberg states.Comment: 5 pages, 3 figure

    Controlling the quantum state of a single photon emitted from a single polariton

    Full text link
    We investigate in detail the optimal conditions for a high fidelity transfer from a single-polariton state to a single-photon state and subsequent homodyne detection of the single photon. We assume that, using various possible techniques, the single polariton has initially been stored as a spin-wave grating in a cloud of cold atoms inside a low-finesse cavity. This state is then transferred to a single-photon optical pulse using an auxiliary beam. We optimize the retrieval efficiency and determine the mode of the local oscillator that maximizes the homodyne efficiency of such a photon. We find that both efficiencies can have values close to one in a large region of experimental parameters.Comment: 10 pages, 8 figure
    corecore