14 research outputs found

    Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148

    Full text link
    SPIRou is a near-infrared spectropolarimeter and a high-precision velocimeter. The SPIRou Legacy Survey collected data from February 2019 to June 2022, half of the time devoted to a blind search for exoplanets around nearby cool stars. The aim of this paper is to present this program and an overview of its properties, and to revisit the radial velocity (RV) data of two multiplanet systems, including new visits with SPIRou. From SPIRou data, we can extract precise RVs using efficient telluric correction and line-by-line measurement techniques, and we can reconstruct stellar magnetic fields from the collection of polarized spectra using the Zeeman-Doppler imaging method. The stellar sample of our blind search in the solar neighborhood, the observing strategy, the RV noise estimates, chromatic behavior, and current limitations of SPIRou RV measurements on bright M dwarfs are described. In addition, SPIRou data over a 2.5-year time span allow us to revisit the known multiplanet systems GJ~876 and GJ~1148. For GJ~876, the new dynamical analysis including the four planets is consistent with previous models and confirms that this system is deep in the Laplace resonance and likely chaotic. The large-scale magnetic map of GJ~876 over two consecutive observing seasons is obtained and shows a dominant dipolar field with a polar strength of 30~G, which defines the magnetic environment in which the inner planet with a period of 1.94~d is embedded. For GJ~1148, we refine the known two-planet model.Comment: accepted in A&

    Magnetic fields & rotation periods of M dwarfs from SPIRou spectra

    Full text link
    We present near-infrared spectropolarimetric observations of a sample of 43 weakly- to moderately-active M dwarfs, carried with SPIRou at the Canada-France-Hawaii Telescope in the framework of the SPIRou Legacy Survey from early 2019 to mid 2022. We use the 6700 circularly polarised spectra collected for this sample to investigate the longitudinal magnetic field and its temporal variations for all sample stars, from which we diagnose, through quasi-periodic Gaussian process regression, the periodic modulation and longer-term fluctuations of the longitudinal field. We detect the large-scale field for 40 of our 43 sample stars, and infer a reliable or tentative rotation period for 38 of them, using a Bayesian framework to diagnose the confidence level at which each rotation period is detected. We find rotation periods ranging from 14 to over 60d for the early-M dwarfs, and from 70 to 200d for most mid- and late-M dwarfs (potentially up to 430d for one of them). We also find that the strength of the detected large-scale fields does not decrease with increasing period or Rossby number for the slowly rotating dwarfs of our sample as it does for higher-mass, more active stars, suggesting that these magnetic fields may be generated through a different dynamo regime than those of more rapidly rotating stars. We also show that the large-scale fields of most sample stars evolve on long timescales, with some of them globally switching sign as stars progress on their putative magnetic cycles.Comment: MNRAS, in press (25 pages, 15 figures, 3 tables

    Wapiti\texttt{Wapiti}: a data-driven approach to correct for systematics in RV data -- Application to SPIRou data of the planet-hosting M dwarf GJ 251

    Full text link
    Context: Recent advances in the development of precise radial velocity (RV) instruments in the near-infrared (nIR) domain, such as SPIRou, have facilitated the study of M-type stars to more effectively characterize planetary systems. However, the nIR presents unique challenges in exoplanet detection due to various sources of planet-independent signals which can result in systematic errors in the RV data. Aims: In order to address the challenges posed by the detection of exoplanetary systems around M-type stars using nIR observations, we introduce a new data-driven approach for correcting systematic errors in RV data. The effectiveness of this method is demonstrated through its application to the star GJ 251. Methods: Our proposed method, referred to as Wapiti\texttt{Wapiti} (Weighted principAl comPonent analysIs reconsTructIon), uses a dataset of per-line RV time-series generated by the line-by-line (LBL) algorithm and employs a weighted principal component analysis (wPCA) to reconstruct the original RV time-series. A multi-step process is employed to determine the appropriate number of components, with the ultimate goal of subtracting the wPCA reconstruction of the per-line RV time-series from the original data in order to correct systematic errors. Results: The application of Wapiti\texttt{Wapiti} to GJ 251 successfully eliminates spurious signals from the RV time-series and enables the first detection in the nIR of GJ 251b, a known temperate super-Earth with an orbital period of 14.2 days. This demonstrates that, even when systematics in SPIRou data are unidentified, it is still possible to effectively address them and fully realize the instrument's capability for exoplanet detection. Additionally, in contrast to the use of optical RVs, this detection did not require to filter out stellar activity, highlighting a key advantage of nIR RV measurements.Comment: Submitted to A&A. For the publicly available Wapiti code, see https://github.com/HkmMerwan/wapit

    Near-IR and optical radial velocities of the active M-dwarf star Gl 388 (AD Leo) with SPIRou at CFHT and SOPHIE at OHP

    Full text link
    Context: The search for extrasolar planets around the nearest M-dwarfs is a crucial step towards identifying the nearest Earth-like planets. One of the main challenges in this search is that M-dwarfs can be magnetically active and stellar activity can produce radial velocity (RV) signals that could mimic those of a planet. Aims: We aim to investigate whether the 2.2 day period observed in optical RVs of the nearby active M-dwarf star Gl 388 (AD Leo) is due to stellar activity or to a planet which co-rotates with the star as suggested in the past. Methods: We obtained quasi-simultaneous optical RVs of Gl 388 from 2019 to 2021 with SOPHIE (R∌\sim75k) at the OHP in France, and near-IR RV and Stokes V measurements with SPIRou at the CFHT (R∌\sim70k). Results: The SOPHIE RV time-series displays a periodic signal with 2.23±\pm0.01 days period and 23.6±\pm0.5 m/s amplitude, which is consistent with previous HARPS observations obtained in 2005-2006. The SPIRou RV time-series is flat at 5 m/s rms and displays no periodic signals. RV signals of amplitude higher than 5.3 m/s at a period of 2.23 days can be excluded with a confidence level higher than 99%. Using the modulation of the longitudinal magnetic field (Bl) measured with SPIRou, we derive a stellar rotation period of 2.2305±\pm0.0016 days. Conclusions: SPIRou RV measurements provide solid evidence that the periodic variability of the optical RVs of Gl 388 is due to stellar activity rather than to a co-rotating planet. The magnetic activity nature of the optical RV signal is further confirmed by the modulation of Bl with the same period. The SPIRou campaign on Gl 388 demonstrates the power of near-IR RV to confirm or infirm planet candidates discovered in the optical around active stars. SPIRou observations reiterate how effective spectropolarimetry is at determining the stellar rotation period.Comment: 25 pages, 23 figures, Accepted by Astronomy and Astrophysic

    Etat des connaissances sur les liens entre les troubles de la reproduction et l’exposition aux produits cosmĂ©tiques chez les professionnels de la coiffure et des soins de beautĂ©. Approche Ă©pidĂ©miologique et mĂ©ta-analytique.

    Full text link
    Expertise conjointe de l'Agence nationale de sécurité du médicament et des produits de santé (Ansm) et de l'INRS sur l'exposition aux produits cosmétiques et les troubles de la reproduction. La recherche a été centrée sur la population exposée aux produits cosmétiques la plus étudiée dans la littérature, à savoir les professionnels de la coiffure et des soins de beauté

    Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148

    Full text link
    International audienceSPIRou is a near-infrared spectropolarimeter and a high-precision velocimeter. The SPIRou Legacy Survey collected data from February 2019 to June 2022, half of the time devoted to a blind search for exoplanets around nearby cool stars. The aim of this paper is to present this program and an overview of its properties, and to revisit the radial velocity (RV) data of two multiplanet systems, including new visits with SPIRou. From SPIRou data, we can extract precise RVs using efficient telluric correction and line-by-line measurement techniques, and we can reconstruct stellar magnetic fields from the collection of polarized spectra using the Zeeman-Doppler imaging method. The stellar sample of our blind search in the solar neighborhood, the observing strategy, the RV noise estimates, chromatic behavior, and current limitations of SPIRou RV measurements on bright M dwarfs are described. In addition, SPIRou data over a 2.5-yr time span allow us to revisit the known multiplanet systems GJ 876 and GJ 1148. For GJ 876, the new dynamical analysis including the four planets is consistent with previous models and confirms that this system is deep in the Laplace resonance and likely chaotic. The large-scale magnetic map of GJ 876 over two consecutive observing seasons is obtained and shows a dominant dipolar field with a polar strength of 30 G, which defines the magnetic environment in which the inner planet with a period of 1.94 days is embedded. For GJ 1148, we refine the known two-planet model.Key words: stars: low-mass / planetary systems / methods: observational / techniques: radial velocities / techniques: polarimetric / stars: magnetic field★ RV time series are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A207★★ Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The observations at the CFHT were performed with care and respect from the summit of Maunakea which is a significant cultural and historic site

    Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148

    Full text link
    International audienceSPIRou is a near-infrared spectropolarimeter and a high-precision velocimeter. The SPIRou Legacy Survey collected data from February 2019 to June 2022, half of the time devoted to a blind search for exoplanets around nearby cool stars. The aim of this paper is to present this program and an overview of its properties, and to revisit the radial velocity (RV) data of two multiplanet systems, including new visits with SPIRou. From SPIRou data, we can extract precise RVs using efficient telluric correction and line-by-line measurement techniques, and we can reconstruct stellar magnetic fields from the collection of polarized spectra using the Zeeman-Doppler imaging method. The stellar sample of our blind search in the solar neighborhood, the observing strategy, the RV noise estimates, chromatic behavior, and current limitations of SPIRou RV measurements on bright M dwarfs are described. In addition, SPIRou data over a 2.5-yr time span allow us to revisit the known multiplanet systems GJ 876 and GJ 1148. For GJ 876, the new dynamical analysis including the four planets is consistent with previous models and confirms that this system is deep in the Laplace resonance and likely chaotic. The large-scale magnetic map of GJ 876 over two consecutive observing seasons is obtained and shows a dominant dipolar field with a polar strength of 30 G, which defines the magnetic environment in which the inner planet with a period of 1.94 days is embedded. For GJ 1148, we refine the known two-planet model.Key words: stars: low-mass / planetary systems / methods: observational / techniques: radial velocities / techniques: polarimetric / stars: magnetic field★ RV time series are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A207★★ Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The observations at the CFHT were performed with care and respect from the summit of Maunakea which is a significant cultural and historic site
    corecore