6 research outputs found

    Analysis of densification mechanisms of dry granulated materials

    Get PDF
    International audienceDry granulation by roll compaction is a continuum manufacturing process to produce granules with improved flowability which can further be easily used in tableting process. However, the granules are non-homogeneous in density and have non-spherical shapes which impact their densification behaviour during die-compaction. The aim of this study was to investigate both the densification mechanism and the failure strength of granules of microcrystalline cellulose (MCC) and mannitol using Cooper-Eaton and Adams models. For both materials, the Cooper-Eaton approach led to the quantification of fractional volume compaction by particle rearrangement and by plastic deformation respectively to explain the difference in densification behaviour of raw material and granules. Moreover, the model showed its ability to capture the effect of granule density and granule sizes and to differentiate the densification mechanisms of MCC as a plastic material and mannitol as a brittle material. The Adams model was used to compute the failure strength of single granule from in-die compression data. The obtained results of the granules were in the range [0.6–1.43  MPa]. However, regarding the effect of granule density, the model showed mixed results indicating that the model is not representative of the studied granules which are not spherical and have a relatively wide range of sizes, nevertheless, the model was derived for near spherical particles with a narrow size distribution

    Numerical simulation of roll compaction of aerated powders

    No full text
    International audiencePermeating air is known to have a negative impact on the roller compaction process, because the feed is destabilized by the flow of escaping gas, causing pressure to build-up and potentially damage compacts at release. Airflow during powder roller compaction and its effect on the rolling process are investigated in the rolling direction (1D), using an extension of the Johanson model for the solid. Fluid transport obeys Darcy's law, with permeability being a function of both material density and particle size, through the Kozeny-Carman relationship. In this modeling, the effect of the air pressure on the solid is neglected in the compaction zone. Assuming air at atmospheric pressure at the feeding angle and ignoring airflow through the gap, predictions of air pressure as a function of the rolling angle for bentonite material powder are presented and discussed. Results suggest the existence of two different stability zones within the operating conditions, where industrial systems could function without being affected by airflow effects. The model highlights the importance of the permeability/rotation speed ratio, which governs the proportion of air trapped in the compacts to the portion evacuated through the feed. We also investigate the effect of particle fragmentation during the rolling process. Finally, we provide guidelines for the scale-up of roller presses subjected to air flow issues, through a study of the effect of the system dimensions and rotation speed on the elimination of air. In spite of the lack of available experimental data, this model allows for a better understanding of how air escapes by diffusing through the material during the rolling process, and opens interesting perspectives for the mitigation of its effect on the process
    corecore