4 research outputs found
Hybrid image representation methods for automatic image annotation: a survey
In most automatic image annotation systems, images are represented with low level features using either global
methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is
beneficial in annotating images. In this paper, we provide a
survey on automatic image annotation techniques according to
one aspect: feature extraction, and, in order to complement
existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation
An MDA approach to secure access to data on cloud using implicit security
International audienc