1 research outputs found

    A Stochastic Second-Order Proximal Method for Distributed Optimization

    Full text link
    In this paper, we propose a distributed stochastic second-order proximal method that enables agents in a network to cooperatively minimize the sum of their local loss functions without any centralized coordination. The proposed algorithm, referred to as St-SoPro, incorporates a decentralized second-order approximation into an augmented Lagrangian function, and then randomly samples the local gradients and Hessian matrices of the agents, so that it is computationally and memory-wise efficient, particularly for large-scale optimization problems. We show that for globally restricted strongly convex problems, the expected optimality error of St-SoPro asymptotically drops below an explicit error bound at a linear rate, and the error bound can be arbitrarily small with proper parameter settings. Simulations over real machine learning datasets demonstrate that St-SoPro outperforms several state-of-the-art distributed stochastic first-order methods in terms of convergence speed as well as computation and communication costs.Comment: 6 pages, 8 figure
    corecore