160 research outputs found

    Achieving Secondary Prevention Low-Density Lipoprotein Particle Concentration Goals Using Lipoprotein Cholesterol-Based Data

    Get PDF
    BACKGROUND: Epidemiologic studies suggest that LDL particle concentration (LDL-P) may remain elevated at guideline recommended LDL cholesterol goals, representing a source of residual risk. We examined the following seven separate lipid parameters in achieving the LDL-P goal of <1000 nmol/L goal for very high risk secondary prevention: total cholesterol to HDL cholesterol ratio, TC/HDL, <3; a composite of ATP-III very high risk targets, LDL-C<70 mg/dL, non-HDL-C<100 mg/dL and TG<150 mg/dL; a composite of standard secondary risk targets, LDL-C<100, non-HDL-C<130, TG<150; LDL phenotype; HDL-C ≥ 40; TG<150; and TG/HDL-C<3. METHODS: We measured ApoB, ApoAI, ultracentrifugation lipoprotein cholesterol and NMR lipoprotein particle concentration in 148 unselected primary and secondary prevention patients. RESULTS: TC/HDL-C<3 effectively discriminated subjects by LDL-P goal (F = 84.1, p<10(-6)). The ATP-III very high risk composite target (LDL-C<70, nonHDL-C<100, TG<150) was also effective (F = 42.8, p<10(-5)). However, the standard secondary prevention composite (LDL-C<100, non-HDL-C<130, TG<150) was also effective but yielded higher LDL-P than the very high risk composite (F = 42.0, p<10(-5)) with upper 95% confidence interval of LDL-P less than 1000 nmol/L. TG<150 and TG/HDL-C<3 cutpoints both significantly discriminated subjects but the LDL-P upper 95% confidence intervals fell above goal of 1000 nmol/L (F = 15.8, p = 0.0001 and F = 9.7, p = 0.002 respectively). LDL density phenotype neared significance (F = 2.85, p = 0.094) and the HDL-C cutpoint of 40 mg/dL did not discriminate (F = 0.53, p = 0.47) alone or add discriminatory power to ATP-III targets. CONCLUSIONS: A simple composite of ATP-III very high risk lipoprotein cholesterol based treatment targets or TC/HDL-C ratio <3 most effectively identified subjects meeting the secondary prevention target level of LDL-P<1000 nmol/L, providing a potential alternative to advanced lipid testing in many clinical circumstances

    Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5

    Get PDF
    Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas)

    iTRAQ-Coupled 2-D LC-MS/MS Analysis of Membrane Protein Profile in Escherichia coli Incubated with Apidaecin IB

    Get PDF
    Apidaecins are a series of proline-rich, 18- to 20-residue antimicrobial peptides produced by insects. They are predominantly active against the Gram-negative bacteria. Previous studies mainly focused on the identification of their internal macromolecular targets, few addressed on the action of apidaecins on the molecules, especially proteins, of bacterial cell membrane. In this study, iTRAQ-coupled 2-D LC-MS/MS technique was utilized to identify altered membrane proteins of Escherichia coli cells incubated with one isoform of apidaecins—apidaecin IB. Cell division protease ftsH, an essential regulator in maintenance of membrane lipid homeostasis, was found to be overproduced in cells incubated with apidaecin IB. Its over-expression intensified the degradation of cytoplasmic protein UDP-3-O-acyl-N- acetylglucosamine deacetylase, which catalyzes the first committed step in the biosynthesis of the lipid A moiety of LPS, and thus leaded to the further unbalanced biosynthesis of LPS and phospholipids. Our findings suggested a new antibacterial mechanism of apidaecins and perhaps, by extension, for other proline-rich antimicrobial peptides

    Design and development of a peptide-based adiponectin receptor agonist for cancer treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adiponectin, a fat tissue-derived adipokine, exhibits beneficial effects against insulin resistance, cardiovascular disease, inflammatory conditions, and cancer. Circulating adiponectin levels are decreased in obese individuals, and this feature correlates with increased risk of developing several metabolic, immunological and neoplastic diseases. Thus, pharmacological replacement of adiponectin might prove clinically beneficial, especially for the obese patient population. At present, adiponectin-based therapeutics are not available, partly due to yet unclear structure/function relationships of the cytokine and difficulties in converting the full size adiponectin protein into a viable drug.</p> <p>Results</p> <p>We aimed to generate adiponectin-based short peptide that can mimic adiponectin action and be suitable for preclinical and clinical development as a cancer therapeutic. Using a panel of 66 overlapping 10 amino acid-long peptides covering the entire adiponectin globular domain (residues 105-254), we identified the 149-166 region as the adiponectin active site. Three-dimensional modeling of the active site and functional screening of additional 330 peptide analogs covering this region resulted in the development of a lead peptidomimetic, ADP 355 (H-DAsn-Ile-Pro-Nva-Leu-Tyr-DSer-Phe-Ala-DSer-NH<sub>2</sub>). In several adiponectin receptor-positive cancer cell lines, ADP 355 restricted proliferation in a dose-dependent manner at 100 nM-10 μM concentrations (exceeding the effects of 50 ng/mL globular adiponectin). Furthermore, ADP 355 modulated several key signaling pathways (AMPK, Akt, STAT3, ERK1/2) in an adiponectin-like manner. siRNA knockdown experiments suggested that ADP 355 effects can be transmitted through both adiponectin receptors, with a greater contribution of AdipoR1. <it>In vivo</it>, intraperitoneal administration of 1 mg/kg/day ADP 355 for 28 days suppressed the growth of orthotopic human breast cancer xenografts by ~31%. The peptide displayed excellent stability (at least 30 min) in mouse blood or serum and did not induce gross toxic effects at 5-50 mg/kg bolus doses in normal CBA/J mice.</p> <p>Conclusions</p> <p>ADP 355 is a first-in-class adiponectin receptor agonist. Its biological activity, superior stability in biological fluids as well as acceptable toxicity profile indicate that the peptidomimetic represents a true lead compound for pharmaceutical development to replace low adiponectin levels in cancer and other malignancies.</p

    Tumour expression of leptin is associated with chemotherapy resistance and therapy-independent prognosis in gastro-oesophageal adenocarcinomas

    Get PDF
    Background: Cytotoxic chemotherapy remains the main systemic therapy for gastro-oesophageal adenocarcinoma, but resistance to chemotherapy is common, resulting in ineffective and often toxic treatment for patients. Predictive biomarkers for chemotherapy response would increase the probability of successful therapy, but none are currently recommended for clinical use. We used global gene expression profiling of tumour biopsies to identify novel predictive biomarkers for cytotoxic chemotherapy. Methods: Tumour biopsies from patients (n=14) with TNM stage IB–IV gastro-oesophageal adenocarcinomas receiving platinum-based combination chemotherapy were used as a discovery cohort and profiled with Affymetrix ST1.0 Exon Genechips. An independent cohort of patients (n=154) treated with surgery with or without neoadjuvant platinum combination chemotherapy and gastric adenocarcinoma cell lines (n=22) were used for qualification of gene expression profiling results by immunohistochemistry. A cisplatin-resistant gastric cancer cell line, AGS Cis5, and the oesophageal adenocarcinoma cell line, OE33, were used for in vitro validation investigations. Results: We identified 520 genes with differential expression (Mann–Whitney U, P<0.020) between radiological responding and nonresponding patients. Gene enrichment analysis (DAVID v6.7) was used on this list of 520 genes to identify pathways associated with response and identified the adipocytokine signalling pathway, with higher leptin mRNA associated with lack of radiological response (P=0.011). Similarly, in the independent cohort (n=154), higher leptin protein expression by immunohistochemistry in the tumour cells was associated with lack of histopathological response (P=0.007). Higher leptin protein expression by immunohistochemistry was also associated with improved survival in the absence of neoadjuvant chemotherapy, and patients with low leptin protein-expressing tumours had improved survival when treated by neoadjuvant chemotherapy (P for interaction=0.038). In the gastric adenocarcinoma cell lines, higher leptin protein expression was associated with resistance to cisplatin (P=0.008), but not to oxaliplatin (P=0.988) or 5fluorouracil (P=0.636). The leptin receptor antagonist SHLA increased the sensitivity of AGS Cis5 and OE33 cell lines to cisplatin. Conclusions: In gastro-oesophageal adenocarcinomas, tumour leptin expression is associated with chemoresistance but a better therapy-independent prognosis. Tumour leptin expression determined by immunohistochemistry has potential utility as a predictive marker of resistance to cytotoxic chemotherapy, and a prognostic marker independent of therapy in gastro-oesophageal adenocarcinoma. Leptin antagonists have been developed for clinical use and leptin and its associated pathways may also provide much needed novel therapeutic targets for gastro-oesophageal adenocarcinoma
    corecore