37 research outputs found
The economics of debt clearing mechanisms
We examine the evolution of decentralized clearinghouse mechanisms from the
13th to the 18th century; in particular, we explore the clearing of non- or
limitedtradable debts like bills of exchange. We construct a theoretical model
of these clearinghouse mechanisms, similar to the models in the theoretical
matching literature, and show that specific decentralized multilateral
clearing algorithms known as rescontre, skontrieren or virement des parties
used by merchants were efficient in specific historical contexts. We can
explain both the evolutionary self-organizing emergence of late medieval and
early modern fairs, and its robustness during the 17th and 18th century
Pharmacokinetic aspects of retinal drug delivery
Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.Peer reviewe
Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer
Delivery of macromolecules into cells and tissues such as skin is a major challenge. This obstacle poses a particular challenge for the delivery of siRNA where cellular and tissue level transport barriers need to be overcome. siRNAs are potential therapeutics for various dermatological diseases including psoriasis, atopic dermatitis, and cancer; however, their utility is limited by their low absorption across the stratum corneum (SC) and into viable cells of skin. Here, we address this challenge using a peptide identified by phage display termed skin penetrating and cell entering (SPACE) peptide. In vitro studies indicated that the SPACE peptide, when conjugated to cargoes such as small molecules and proteins, was able to facilitate their penetration across the SC into epidermis and dermis. The peptide also exhibited increased penetration into various cells including keratinocytes, fibroblasts, and endothelial cells, likely through a macropinocytosis pathway. The ability of SPACE peptide to deliver siRNA was tested in vivo using two targets, interleukin-10 and GAPDH. Conjugation of the peptide to siRNA led to their enhanced absorption into skin and knockdown of corresponding protein targets