5 research outputs found

    Degeneration Effects of Thin-Film Sensors after Critical Load Conditions of Machine Components

    Get PDF
    In the context of intelligent components in industrial applications in the automotive, energy or construction sector, sensor monitoring is crucial for security issues and to avoid long and costly downtimes. This article discusses component-inherent thin-film sensors for this purpose, which, in contrast to conventional sensor technology, can be applied inseparably onto the component’s surface via sputtering, so that a maximum of information about the component’s condition can be generated, especially regarding deformation. This article examines whether the sensors can continue to generate reliable measurement data even after critical component loads have been applied. This extends their field of use concerning plastic deformation behavior. Therefore, any change in sensor properties is necessary for ongoing elastic strain measurements. These novel fundamentals are established for thin-film constantan strain gauges and platinum temperature sensors on steel substrates. In general, a k-factor decrease and an increase in the temperature coefficient of resistance with increasing plastic deformation could be observed until a sensor failure above 0.5% plastic deformation (constantan) occurred (1.3% for platinum). Knowing these values makes it possible to continue measuring elastic strains after critical load conditions on a machine component in terms of plastic deformation. Additionally, a method of sensor-data fusion for the clear determination of plastic deformation and temperature change is presented

    Development, Characterisation and High-Temperature Suitability of Thin-Film Strain Gauges Directly Deposited with a New Sputter Coating System

    Get PDF
    New sensor and sensor manufacturing technologies are identified as a key factor for a successful digitalisation and are therefore economically important for manufacturers and industry. To address various requirements, a new sputter coating system has been invented at the Institute of Micro Production Technology. It enables the deposition of sensor systems directly onto technical surfaces. Compared to commercially available systems, it has no spatial limitations concerning the maximum coatable component size. Moreover, it enables a simultaneous structuring of deposited layers. Within this paper, characterisation techniques, results and challenges concerning directly deposited thin film strain gauges with the new sputter coating system are presented. Constantan (CuNiMn 54/45/1) and NiCr 80/20 are used as sensor materials. The initial resistance, temperature coefficient of resistance and gauge factor/k-factor of quarter-bridge strain gauges are characterised. The influence of a protective layer on sensor behaviour and layer adhesion is investigated as well. Moreover, the temperature compensation quality of directly deposited half-bridge strain gauges is evaluated, optimised with an external trimming technology and benchmarked against commercial strain gauges. Finally, the suitability for high-temperature strain measurement is investigated. Results show a maximum operation temperature of at least 400 °C, which is above the current state-of-the-art of commercial foil-based metal strain gauges

    Detailed characterisation of batch-manufactured flexible micro-grinding tools for electrochemical assisted grinding of copper surfaces

    Get PDF
    Precision machining is becoming more and more important with the increasing demands on surface quality for various components. This applies, for example, to mirror components in micro-optics or cooling components in microelectronics. Copper is a frequently used material for this purpose, but its mechanical properties make it difficult to machine. In this study, a process strategy for finishing copper surfaces with batch-manufactured micro-grinding tools in an electrochemically assisted grinding process is demonstrated. The tool heads are manufactured from a polyimide-abrasive-suspension and silicon as a carrier substrate using microsystems technology. The matching shafts are milled from aluminium. The tools are then used on pure copper and oxidised copper surfaces. By using finer abrasives grains (1.6–2.4 ”m instead of 4–6 ”m) than previously, similar surface roughness values could be achieved (Ra = 0.09 ± 0.02 ”m, Rz = 1.94 ± 0.73 ”m) with the same grinding process. An optimised grinding process that combines the use of rough and fine tools, on the other hand, achieves significantly better surface finishes in just four grinding iterations (Ra = 0.02 ± 0.01 ”m, Rz = 0.83 ± 0.21 ”m). In order to achieve a further increase in surface quality, this optimised grinding process is combined with the anodic oxidation of the copper workpieces. The surface modification is done to increase the machinability of the surface by creating an oxide layer. This is confirmed by the results of scratch tests carried out, which showed less force acting on the tool during machining with the oxide layer than with a pure copper surface. To realise this within the machine tool, an electrochemical cell is shown that can be integrated into the machine so that the oxidation can be carried out immediately before the grinding process. The copper layers produced inside the electrochemical cell in the machine tool show similar characteristics to the samples produced outside. Processing the oxidised samples with the optimised grinding process led to a further reduction of about 17% in the Rz values (Ra = 0.03 ± 0.01 ”m, Rz = 0.69 ± 0.20 ”m). The combination of the shown grinding process and the integration of anodic oxidation within the machine tool for the surface modification of copper workpieces seems to be promising to achieve high surface finishes

    Degeneration Effects of Thin-Film Sensors after Critical Load Conditions of Machine Components

    No full text
    In the context of intelligent components in industrial applications in the automotive, energy or construction sector, sensor monitoring is crucial for security issues and to avoid long and costly downtimes. This article discusses component-inherent thin-film sensors for this purpose, which, in contrast to conventional sensor technology, can be applied inseparably onto the component’s surface via sputtering, so that a maximum of information about the component’s condition can be generated, especially regarding deformation. This article examines whether the sensors can continue to generate reliable measurement data even after critical component loads have been applied. This extends their field of use concerning plastic deformation behavior. Therefore, any change in sensor properties is necessary for ongoing elastic strain measurements. These novel fundamentals are established for thin-film constantan strain gauges and platinum temperature sensors on steel substrates. In general, a k-factor decrease and an increase in the temperature coefficient of resistance with increasing plastic deformation could be observed until a sensor failure above 0.5% plastic deformation (constantan) occurred (1.3% for platinum). Knowing these values makes it possible to continue measuring elastic strains after critical load conditions on a machine component in terms of plastic deformation. Additionally, a method of sensor-data fusion for the clear determination of plastic deformation and temperature change is presented

    A Review on Sensor‐Integrating Machine Elements

    No full text
    Abstract This contribution summarizes the current state of research regarding so‐called sensor‐integrating machine elements as an enabler of digitalization in mechanical engineering and——if available—their application in industry. The focus is on the methodical aspects of the development of these machine elements in general as well as specific sensor‐integrating machine elements that are either already in use or currently under development. Developmental aspects include the robust design of initially evaluated concepts for sensor‐integrating machine elements as well as their modularization. Smart materials with sensory functions are included in the analysis as well as the differentiation with regard to add‐on sensors. The aim of the authors interlinked by a special research program funded by the German Research Foundation (DFG) is to facilitate the exchange with other researchers with the help of the comprehensive overview given in this contribution. The contribution concludes with a brief discussion of open challenges, such as the energy supply and data transfer in rotating systems and also data security
    corecore