4 research outputs found

    Promoter keyholes enable specific and persistent multi-gene expression programs in primary T cells without genome modification

    Get PDF
    Non-invasive epigenome editing is a promising strategy for engineering gene expression programs, yet potency, specificity, and persistence remain challenging. Here we show that effective epigenome editing is gated at single-base precision via 'keyhole' sites in endogenous regulatory DNA. Synthetic repressors targeting promoter keyholes can ablate gene expression in up to 99% of primary cells with single-gene specificity and can seamlessly repress multiple genes in combination. Transient exposure of primary T cells to keyhole repressors confers mitotically heritable silencing that persists to the limit of primary cultures in vitro and for at least 4 weeks in vivo, enabling manufacturing of cell products with enhanced therapeutic efficacy. DNA recognition and effector domains can be encoded as separate proteins that reassemble at keyhole sites and function with the same efficiency as single chain effectors, enabling gated control and rapid screening for novel functional domains that modulate endogenous gene expression patterns. Our results provide a powerful and exponentially flexible system for programming gene expression and therapeutic cell products

    Promoter keyholes enable specific and persistent multi-gene expression programs in primary T cells without genome modification

    Get PDF
    Non-invasive epigenome editing is a promising strategy for engineering gene expression programs, yet potency, specificity, and persistence remain challenging. Here we show that effective epigenome editing is gated at single-base precision via 'keyhole' sites in endogenous regulatory DNA. Synthetic repressors targeting promoter keyholes can ablate gene expression in up to 99% of primary cells with single-gene specificity and can seamlessly repress multiple genes in combination. Transient exposure of primary T cells to keyhole repressors confers mitotically heritable silencing that persists to the limit of primary cultures in vitro and for at least 4 weeks in vivo, enabling manufacturing of cell products with enhanced therapeutic efficacy. DNA recognition and effector domains can be encoded as separate proteins that reassemble at keyhole sites and function with the same efficiency as single chain effectors, enabling gated control and rapid screening for novel functional domains that modulate endogenous gene expression patterns. Our results provide a powerful and exponentially flexible system for programming gene expression and therapeutic cell products

    Perspectives on ENCODE

    No full text
    The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.11Nsciescopu

    Expanded encyclopaedias of DNA elements in the human and mouse genomes

    No full text
    AbstractThe human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.11Nsciescopu
    corecore