9 research outputs found

    Identification of catalytically important residues of the carotenoid 1,2-hydratases from Rubrivivax gelatinosus and Thiocapsa roseopersicina

    No full text
    Carotenoid 1,2-hydratases (CrtC) catalyze the selective addition of water to an isolated carbon–carbon double bond. Although their involvement in the carotenoid biosynthetic pathway is well understood, little is known about the mechanism by which these hydratases transform carotenoids such as lycopene into the corresponding hydroxyl compounds. Key residues were identified at positions His239, Trp241, Tyr266, and Asp268 in CrtC from Rubrivivax gelatinosus (and corresponding positions in Thiocapsa roseopersicina). Alanine mutants at these positions were found to be completely inactive, suggesting their direct involvement in the catalytic reaction. Our resulting mechanistic hypothesis is in analogy with the recently studied class of terpenoid cyclase enzymes containing a highly acidic aspartic residue in their active site. We propose that a similar aspartic acid residue, which is conserved through all putative CrtCs, is involved in initial protonation of the double bond in lycopene.BT/BiotechnologyApplied Science

    Enantioselective Michael Addition of Water

    No full text
    The enantioselective Michael addition using water as both nucleophile and solvent has to date proved beyond the ability of synthetic chemists. Herein, the direct, enantioselective Michael addition of water in water to prepare important ?-hydroxy carbonyl compounds using whole cells of Rhodococcus strains is described. Good yields and excellent enantioselectivities were achieved with this method. Deuterium labeling studies demonstrate that a Michael hydratase catalyzes the water addition exclusively with anti-stereochemistry.BT/BiotechnologyApplied Science

    Assessing the stereoselectivity of Serratia marcescens CECT 977 2,3-butanediol dehydrogenase

    No full text
    α-Hydroxy ketones and vicinal diols constitute well-known building blocks in organic synthesis. Here we describe one enzyme that enables the enantioselective synthesis of both building blocks starting from diketones. The enzyme 2,3-butanediol dehydrogenase (BudC) from S. marcescens CECT 977 belongs to the NADH-dependent metal-independent short-chain dehydrogenases/reductases family (SDR) and catalyses the selective asymmetric reductions of prochiral α-diketones to the corresponding α-hydroxy ketones and diols. BudC is highly active towards structurally diverse diketones in combination with nicotinamide cofactor regeneration systems. Aliphatic diketones, cyclic diketones and alkyl phenyl diketones are well accepted, whereas their derivatives possessing two bulky groups are not converted. In the reverse reaction vicinal diols are preferred over other substrates with hydroxy/keto groups in non-vicinal positions.BT/BiocatalysisScience Education and Communicatio

    Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895

    No full text
    Rhodococcus rhodochrous ATCC 17895 possesses an array of mono- and dioxygenases, as well as hydratases, which makes it an interesting organism for biocatalysis. R. rhodochrous is a Gram-positive aerobic bacterium with a rod-like morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,869,887 bp long genome contains 6,609 protein-coding genes and 53 RNA genes. Based on small subunit rRNA analysis, the strain is more likely to be a strain of Rhodococcus erythropolis rather than Rhodococcus rhodochrous.BT/BiotechnologyApplied Science

    Towards osteogenic and bactericidal nanopatterns?

    No full text
    Recent discoveries have shown that nanopatterns with feature sizes ≤100 nm could direct stem cell fate or kill bacteria. These effects could be used to develop orthopedic implants with improved osseointegration and decreased chance of implant-associated infections. The quest for osteogenic and bactericidal nanopatterns is ongoing but no controlled nanopatterns with dual osteogenic and bactericidal functionalities have been found yet. In this study, electron beam induced deposition (EBID) was used for accurate and reproducible decoration of silicon surfaces with four different types of nanopatterns. The features used in the first two nanopatterns (OST1 and OST2) were derived from osteogenic nanopatterns known to induce osteogenic differentiation of stem cells in the absence of osteogenic supplements. Two modifications of these nanopatterns were also included (OST2-SQ, OST2-H90) to study the effects of controlled disorder and lower nanopillar heights. An E. coli K-12 strain was used for probing the response of bacteria to the nanopatterns. Three nanopatterns (OST2, OST2-SQ, and OST2-H90) exhibited clear bactericidal behavior as evidenced by severely damaged cells and disrupted formation of extracellular polymeric substance. These findings indicate that controlled nanopatterns with features derived from osteogenic ones can have bactericidal activity and that EBID represents an enabling nanotechnology to achieve (multi)functional nanopatterns for bone implants.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/BiocatalysisBiomaterials & Tissue BiomechanicsImPhys/Charged Particle Optic

    Rhodococcus strains as source for ene-reductase activity

    No full text
    Rhodococcus strains are ubiquitous in nature and known to metabolise a wide variety of compounds. At the same time, asymmetric reduction of C=C bonds is important in the production of high-valued chiral building blocks. In order to evaluate if Rhodococci can be used for this task, we have probed several Rhodococcus rhodochrous and R. erythropolis strains for ene-reductase activity. A series of substrates including activated ketones, an aldehyde, an imide and nitro-compound were screened using whole cells of seven Rhodococcus strains. This revealed that whole cells of all Rhodococcus strains showed apparent (S)-selectivity towards ketoisophorone, while most other organisms show (R)-selectivity for this compound. Three putative ene-reductases from R. rhodochrous ATCC 17895 were heterologously expressed in Escherichia coli. One protein was purified and its biocatalytic and biochemical properties were characterised, showing typical (enantioselective) properties for class 3 ene-reductases of the old yellow enzyme family.BT/Biocatalysi

    The complete genome sequence of the nitrile biocatalyst Rhodocccus rhodochrous ATCC BAA-870

    No full text
    BACKGROUND: Rhodococci are industrially important soil-dwelling Gram-positive bacteria that are well known for both nitrile hydrolysis and oxidative metabolism of aromatics. Rhodococcus rhodochrous ATCC BAA-870 is capable of metabolising a wide range of aliphatic and aromatic nitriles and amides. The genome of the organism was sequenced and analysed in order to better understand this whole cell biocatalyst. RESULTS: The genome of R. rhodochrous ATCC BAA-870 is the first Rhodococcus genome fully sequenced using Nanopore sequencing. The circular genome contains 5.9 megabase pairs (Mbp) and includes a 0.53 Mbp linear plasmid, that together encode 7548 predicted protein sequences according to BASys annotation, and 5535 predicted protein sequences according to RAST annotation. The genome contains numerous oxidoreductases, 15 identified antibiotic and secondary metabolite gene clusters, several terpene and nonribosomal peptide synthetase clusters, as well as 6 putative clusters of unknown type. The 0.53 Mbp plasmid encodes 677 predicted genes and contains the nitrile converting gene cluster, including a nitrilase, a low molecular weight nitrile hydratase, and an enantioselective amidase. Although there are fewer biotechnologically relevant enzymes compared to those found in rhodococci with larger genomes, such as the well-known Rhodococcus jostii RHA1, the abundance of transporters in combination with the myriad of enzymes found in strain BAA-870 might make it more suitable for use in industrially relevant processes than other rhodococci. CONCLUSIONS: The sequence and comprehensive description of the R. rhodochrous ATCC BAA-870 genome will facilitate the additional exploitation of rhodococci for biotechnological applications, as well as enable further characterisation of this model organism. The genome encodes a wide range of enzymes, many with unknown substrate specificities supporting potential applications in biotechnology, including nitrilases, nitrile hydratase, monooxygenases, cytochrome P450s, reductases, proteases, lipases, and transaminases.BT/Industrial MicrobiologyBT/Biocatalysi

    Deciphering the Roles of Interspace and Controlled Disorder in the Bactericidal Properties of Nanopatterns against Staphylococcus aureus

    No full text
    Recent progress in nano-/micro-fabrication techniques has paved the way for the emergence of synthetic bactericidal patterned surfaces that are capable of killing the bacteria via mechanical mechanisms. Different design parameters are known to affect the bactericidal activity of nanopatterns. Evaluating the effects of each parameter, isolated from the others, requires systematic studies. Here, we systematically assessed the effects of the interspacing and disordered arrangement of nanopillars on the bactericidal properties of nanopatterned surfaces. Electron beam induced deposition (EBID) was used to additively manufacture nanopatterns with precisely controlled dimensions (i.e., a height of 190 nm, a diameter of 80 nm, and interspaces of 100, 170, 300, and 500 nm) as well as disordered versions of them. The killing efficiency of the nanopatterns against Gram-positive Staphylococcus aureus bacteria increased by decreasing the interspace, achieving the highest efficiency of 62 ± 23% on the nanopatterns with 100 nm interspacing. By comparison, the disordered nanopatterns did not influence the killing efficiency significantly, as compared to their ordered correspondents. Direct penetration of nanopatterns into the bacterial cell wall was identified as the killing mechanism according to cross-sectional views, which is consistent with previous studies. The findings indicate that future studies aimed at optimizing the design of nanopatterns should focus on the interspacing as an important parameter affecting the bactericidal properties. In combination with controlled disorder, nanopatterns with contrary effects on bacterial and mammalian cells may be developedBiomaterials & Tissue BiomechanicsImPhys/Microscopy Instrumentation & TechniquesBT/BiocatalysisMicro and Nano Engineerin

    Nature helps: Toward bioinspired bactericidal nanopatterns

    No full text
    Development of synthetic bactericidal surfaces is a drug-free route to the prevention of implant-associated infections. Surface nanotopographies with specific dimensions have been shown to kill various types of bacterial strains through a mechanical mechanism, while regulating stem cell differentiation and tissue regeneration. The effective ranges of dimensions required to simultaneously achieve both aims are in the <200 nm range. Here, a nanoscale additive manufacturing (=3D printing) technique called electron beam induced deposition (EBID) is used to fabricate nanopillars with reproducible and precisely controlled dimensions and arrangements that are within those effective ranges (i.e. a height of 190 nm, a diameter of 80 nm, and an interspacing of 170 nm). When compared to the flat surface, the nanopatterned surfaces show a significant bactericidal activity against both Escherichia coli and Staphylococcus aureus (with respective killing efficiencies of 97 ± 1% and 36 ± 5%). Direct penetration of nanopatterns into the bacterial cell wall leads to the disruption of the cell wall and cell death. The more rigid cell wall of S. aureus is consistent with the decreased killing efficiency. These findings support the development of nanopatterns with precisely controlled dimensions that are capable of killing both Gram-negative and Gram-positive bacteria.Biomaterials & Tissue BiomechanicsBT/BiocatalysisImPhys/Charged Particle Optic
    corecore