13,295 research outputs found
Studies of Stellar Collapse and Black Hole Formation with the Open-Source Code GR1D
We discuss results from simulations of black hole formation in failing core-collapse supernovae performed with the code GR1D, a new open-source Eulerian spherically-symmetric general-relativistic hydrodynamics code. GR1D includes rotation in an approximate way (1.5D) comes with multiple finite-temperature nuclear equations of state (EOS), and treats neutrinos in the post-core-bounce phase via a 3-flavor leakage scheme and a heating prescription. We chose the favored K_0 = 220 MeV-variant of the Lattimer & Swesty (1990) EOS and present collapse calculations using the progenitor models of Limongi & Chieffi (2006). We show that there is no direct (or “prompt”) black hole formation in the collapse of ordinary massive stars (8M_☉ ≲ M_(ZAMS) ≲ 100 M_☉) present first results from black hole formation simulations that include rotation
A theoretical study of microwave beam absorption by a rectenna
The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed
Microelectromagnets for Trapping and Manipulating Ultracold Atomic Quantum Gases
We describe the production and characterization of microelectromagnets made
for trapping and manipulating atomic ensembles. The devices consist of 7
fabricated parallel copper conductors 3 micrometer thick, 25mm long, with
widths ranging from 3 to 30 micrometer, and are produced by electroplating a
sapphire substrate. Maximum current densities in the wires up to 6.5 * 10^6 A /
cm^2 are achieved in continuous mode operation. The device operates
successfully at a base pressure of 10^-11 mbar. The microstructures permit the
realization of a variety of magnetic field configurations, and hence provide
enormous flexibility for controlling the motion and the shape of Bose-Einstein
condensates.Comment: 4 pages, 3 figure
Neutrino Signatures and the Neutrino-Driven Wind in Binary Neutron Star Mergers
We present VULCAN/2D multigroup flux-limited-diffusion radiation-hydrodynamics simulations of binary neutron star mergers, using the Shen equation of state, covering ≳ 100 ms, and starting from azimuthal-averaged two-dimensional slices obtained from three-dimensional smooth-particle-hydrodynamics simulations of Rosswog & Price for 1.4M☉ (baryonic) neutron stars with no initial spins, co-rotating spins, or counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multiangle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by ¯νe and “νμ” neutrinos at the peak, although νe emission may be stronger at late times. We obtain typical peak neutrino energies for νe, ¯νe, and “νμ” of ∼12, ∼16, and ∼22 MeV, respectively. The supermassive neutron star (SMNS) formed from the merger has a cooling timescale of ≾ 1 s. Charge-current neutrino reactions lead to the formation of a thermally driven bipolar wind with (M·) ∼ 10^−3 M☉ s^−1 and baryon-loading in the polar regions, preventing any production of a γ-ray burst prior to black hole formation. The large budget of rotational free energy suggests that magneto-rotational effects could produce a much-greater polar mass loss. We estimate that ≾ 10^−4 M☉ of material with an electron fraction in the range 0.1–0.2 becomes unbound during this SMNS phase as a result of neutrino heating. We present a new formalism to compute the νi ¯νi annihilation rate based on moments of the neutrino-specific intensity computed with our multiangle solver. Cumulative annihilation rates, which decay as ∼t^−1.8, decrease over our 100 ms window from a few ×1050 to ∼ 1049 erg s−1, equivalent to a few ×10^54 to ∼10^53 e−e+ pairs per second
The Influence of Thermal Pressure on Equilibrium Models of Hypermassive Neutron Star Merger Remnants
The merger of two neutron stars leaves behind a rapidly spinning hypermassive
object whose survival is believed to depend on the maximum mass supported by
the nuclear equation of state, angular momentum redistribution by
(magneto-)rotational instabilities, and spindown by gravitational waves. The
high temperatures (~5-40 MeV) prevailing in the merger remnant may provide
thermal pressure support that could increase its maximum mass and, thus, its
life on a neutrino-cooling timescale. We investigate the role of thermal
pressure support in hypermassive merger remnants by computing sequences of
spherically-symmetric and axisymmetric uniformly and differentially rotating
equilibrium solutions to the general-relativistic stellar structure equations.
Using a set of finite-temperature nuclear equations of state, we find that hot
maximum-mass critically spinning configurations generally do not support larger
baryonic masses than their cold counterparts. However, subcritically spinning
configurations with mean density of less than a few times nuclear saturation
density yield a significantly thermally enhanced mass. Even without decreasing
the maximum mass, cooling and other forms of energy loss can drive the remnant
to an unstable state. We infer secular instability by identifying approximate
energy turning points in equilibrium sequences of constant baryonic mass
parametrized by maximum density. Energy loss carries the remnant along the
direction of decreasing gravitational mass and higher density until instability
triggers collapse. Since configurations with more thermal pressure support are
less compact and thus begin their evolution at a lower maximum density, they
remain stable for longer periods after merger.Comment: 20 pages, 12 figures. Accepted for publication in Ap
Neutrino-driven Turbulent Convection and Standing Accretion Shock Instability in Three-Dimensional Core-Collapse Supernovae
We conduct a series of numerical experiments into the nature of
three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of
core-collapse supernovae using 3D general-relativistic hydrodynamic simulations
of a - progenitor star with a neutrino leakage/heating scheme. We
vary the strength of neutrino heating and find three cases of 3D dynamics: (1)
neutrino-driven convection, (2) initially neutrino-driven convection and
subsequent development of the standing accretion shock instability (SASI), (3)
SASI dominated evolution. This confirms previous 3D results of Hanke et al.
2013, ApJ 770, 66 and Couch & Connor 2014, ApJ 785, 123. We carry out
simulations with resolutions differing by up to a factor of 4 and
demonstrate that low resolution is artificially favorable for explosion in the
3D convection-dominated case, since it decreases the efficiency of energy
transport to small scales. Low resolution results in higher radial convective
fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino
heating. In the SASI-dominated case, lower resolution damps SASI oscillations.
In the convection-dominated case, a quasi-stationary angular kinetic energy
spectrum develops in the heating layer. Like other 3D studies, we
find in the "inertial range," while theory and
local simulations argue for . We argue that
current 3D simulations do not resolve the inertial range of turbulence and are
affected by numerical viscosity up to the energy containing scale, creating a
"bottleneck" that prevents an efficient turbulent cascade.Comment: 24 pages, 15 figures. Accepted for publication in The Astrophysical
Journal. Added one figure and made minor modifications to text according to
suggestions from the refere
A New Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes
We present the new open-source spherically-symmetric general-relativistic
(GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR
hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs
radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify
substantially. We discretize the GRHD equations with a finite-volume scheme,
employing piecewise-parabolic reconstruction and an approximate Riemann solver.
GR1D is intended for the simulation of stellar collapse to neutron stars and
black holes and will also serve as a testbed for modeling technology to be
incorporated in multi-D GR codes. Its GRHD part is coupled to various
finite-temperature microphysical equations of state in tabulated form that we
make available with GR1D. An approximate deleptonization scheme for the
collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch
are included and described. We also derive the equations for effective rotation
in 1D and implement them in GR1D. We present an array of standard test
calculations and also show how simple analytic equations of state in
combination with presupernova models from stellar evolutionary calculations can
be used to study qualitative aspects of black hole formation in failing
rotating core-collapse supernovae. In addition, we present a simulation with
microphysical EOS and neutrino leakage/heating of a failing core-collapse
supernova and black hole formation in a presupernova model of a 40 solar mass
zero-age main-sequence star. We find good agreement on the time of black hole
formation (within 20%) and last stable protoneutron star mass (within 10%) with
predictions from simulations with full Boltzmann neutrino radiation
hydrodynamics.Comment: 25 pages, 6 figures, 2 appendices. Accepted for publication to the
Classical and Quantum Gravity special issue for MICRA2009. Code may be
downloaded from http://www.stellarcollapse.org Update: corrected title, small
modifications suggested by the referees, added source term derivation in
appendix
Abundant Methanol Masers but no New Evidence for Star Formation in GCM0.253+0.016
We present new observations of the quiescent giant molecular cloud
GCM0.253+0.016 in the Galactic center, using the upgraded Karl G. Jansky Very
Large Array. Observations were made at wavelengths near 1 cm, at K (24 to 26
GHz) and Ka (27 and 36 GHz) bands, with velocity resolutions of 1-3 km/s and
spatial resolutions of ~0.1 pc, at the assumed 8.4 kpc distance of this cloud.
The continuum observations of this cloud are the most sensitive yet made, and
reveal previously undetected emission which we attribute primarily to free-free
emission from external ionization of the cloud. In addition to the sensitive
continuum map, we produce maps of 12 molecular lines: 8 transitions of NH3 --
(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7) and (9,9), as well as the HC3N (3-2)
and (4-3) lines, and CH3OH 4(-1) - 3(0) the latter of which is known to be a
collisionally-excited maser. We identify 148 CH3OH 4(-1) - 3(0) (36.2 GHz)
sources, of which 68 have brightness temperatures in excess of the highest
temperature measured for this cloud (400 K) and can be confirmed to be masers.
The majority of these masers are concentrated in the southernmost part of the
cloud. We find that neither these masers nor the continuum emission in this
cloud provide strong evidence for ongoing star formation in excess of that
previously inferred by the presence of an H2O maser.Comment: 33 pages, 4 tables, 9 figures; ApJ Accepte
- …