158 research outputs found

    Suppressed Immune System Caused by Exposure to Asbestos and Malignant Mesothelioma

    Get PDF
    Mesothelioma is the most serious of the asbestos-related diseases. It is caused by exposure to relatively low doses of asbestos and takes a long period to develop, which suggests the enactment of gradual adverse effects other than cellular toxicity. The immune system, which can play a role in tumor prevention, is a presumable target of asbestos by accumulation in lymph nodes and then slowly affecting functions of immune cells. Here, we describe key findings obtained from our studies concerning the immune-suppressive effects of asbestos and functional alteration in immune cells of patients with mesothelioma as well as plaque-positive subjects. Asbestos exposure of cell cultures resulted in decreased natural and acquired cytotoxicity exerted by NK cells and CTLs and the ability of Th1 cells to activate and support antitumor immunity. In contrast, asbestos exposure augmented Treg cell function and generation of fibrogenic/suppressive macrophages. Mesothelioma patients also showed similar characteristics in certain alterations caused by asbestos exposure. Additionally, our recent study established immunological screening devices for mesothelioma and asbestos exposure on the basis of comprehensive analysis of peripheral blood. Those findings underscore the importance of the immunological effects of asbestos and should assist further understanding of the mechanism and early detection of mesothelioma

    Immune Alteration Caused by Fibrous and Particulate Environmental Substances

    Get PDF
    Fibrous and particulate environmental substances such as asbestos fibers and silica particles cause not only lung fibrosis but also various health disturbances. Asbestos induce malignant tumors such as pleural mesothelioma and lung cancer. Silicosis patients exposed to silica particles show complications of various autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, and antineutrophil cytoplasmic antibody (ANCA)-related vasculitis/nephritis. The causative alteration of immune cells exposed to these environmental substances may form baseline modification of human immune system not only localized pulmonary lesions, alteration of alveolar macrophages, and others but also general immune system and changes of function in effector, regulatory, and cytotoxic T cells and natural killer cells. In this review, both (localized and generalized) immune alterations caused by environmental fibrous and particulate substances are summarized and reported

    Trials for Health Promotion by Indoor Environment Modifications

    Get PDF
    Two attempts to address health issues by indoor environment modifications are introduced. One approach involves enhancement of natural killer cell activity by negatively charged particle dominant indoor air conditions (NCPDIAC) resulting from extra-porous charcoal paint and application of an electric voltage on the wall surface to adsorb positively charged small particles (approx. 20 nm in diameter). This apparatus creates relatively continuous NCPDIAC. The other approach involves prevention of pollen allergy symptoms by a cloth containing specific ore powder (CCSNOP). With the former approach, we engaged in short-term (2.5 hour), middle-term (2 W night stay), and long-term (3 M) stays under NCPDIAC and found that IL-2 levels increased under short-term stays and that natural killer cell activity was enhanced in middle- and long-term stay experiments. Implementation of this strategy may partially prevent the occurrence of cancers and viral-mediated diseases. With the latter approach, a 1-hour stay within a CCSNOP room resulted in improvement of symptoms in patients with pollen allergies in addition to a reduction in bad moods caused by any remaining symptoms. In both cases, longer-term experiments should be performed in an effort to confirm and delineate the biological effects of these indoor environment modifications on human health problems

    A New Method to Determine Natural Killer Cell Activity Without Target Cells

    Get PDF
    Natural killer (NK) cell activity is a conventional parameter used to determine the performance lytic activity against tumor as well as virus-infected cells in innate immunity. However, use of this parameter has several problems related to bioassay measurements. To measure NK cell activity, target cells and cell culture equipment are required and adequate pre-culture of target cells is needed to maintain constant sensitivity for NK cells. NK cell-activating receptors play an important role in the recognition of targets, which transduce the signals necessary for cellular machinery to induce target injury and cytokine production. We statistically examined the parameters related to the NK cell activity of human peripheral blood mononuclear cells (PBMCs) by multiple regression analysis, and obtained a formula with NK cell % and RNA levels of two genes in isolated NK cells. The score calculated using this formula with the three measured values showed significant correlation with NK cell activity. This prediction score, named the non-incubating natural killer (NINK) score, which is independent of target cells, is not affected by inappropriate preparation of those targets, and allows us to accurately compare the performance of NK cell activity among specimens

    Review of Regulation for the Fas-mediated Apoptotic Pathway in Silicosis Patients

    Get PDF
    The past several years, we have been investigating immunological aspects of silicosis focusing on Fas-mediated apoptosis. We found elevated serum level of soluble Fas (sFas) molecule, higher gene expression of sFas and decoy receptor 3 (DcR3) genes in peripheral blood mononuclear cells (PBMC) than healthy volunteers, and various alternatively spliced Fas transcripts in PBMC. The factor analysis using these results indicated that there were a small number of patients who developed immunological diseases without presenting with respiratory disorders. In addition, we discuss the mechanism involved in the development of autoimmune disorders found in silicosis patients

    Toxicity of Titanate Nanosheets on Human Immune Cells

    Get PDF
    Titanium oxide is regarded as a bio-inert material, but studies concerning the toxic effects of titanium dioxide (TiO2), particularly nano-scaled TiO2 particles, have been accumulating that indicate nano-scaled TiO2 particles show more harm and cause greater alteration of immune functions compared with large particles. Inorganic nanosheets have been the focus of increasing interest because of their ultrathin structure, as well as diversity of compounds and structures leading to various functions. Oxide nanosheets are included in the group comprising inorganic nanosheets, and titanate nanosheets (TiNSs) represent a form of oxide nanosheets. We therefore examined the toxicity of nano-scaled 2D materials of TiNSs on human immune cells. Our study revealed that TiNSs have the potential to cause harm through caspase-dependent apoptosis of human peripheral blood mononuclear cells (PBMCs) to the same degree as asbestos. Furthermore, isolated monocytes developed marked vacuoles prior to cell death upon exposure to TiNSs, which were found in the vacuoles and indicated engulfment of TiNSs. A consideration of these findings with the co-localization of vacuoles with endocytosed fluorescence-labeled dextran indicates that TiNSs entered the endosomal pathway, leading to the formation of vacuoles in monocytes and subsequent cell death. TiNSs might therefore affect immune functions through interference of endo-lysosomal functions

    Alteration of Various Lymphocytes by Particulate and Fibrous Substances

    Get PDF
    Various occupational and environmental substances alter the cellular and molecular function of the human lymphoid system. For example, silicosis patients who have been chronically exposed to silica particles often complicate with autoimmune diseases such as rheumatoid arthritis and systemic sclerosis. From our investigations, silica particles affect CD4+ responder T cells and regulatory T cells (Tregs), which results in the disruption of autoimmunity. Asbestos fibers are a type of mineral silicate, and patients exposed to asbestos fibers revealed cancers such as mesothelioma and lung cancer. In these cases, asbestos fibers may reduce antitumor immunity. Our results investigating the effect of asbestos on cytotoxic T lymphocyte, natural killer (NK) cells, CD4+ cells, and Tregs revealed a reduction in antitumor immunity. To date, the effects of silica and asbestos on Th17 cells and antigen-presenting cells such as dendritic cells and macrophages remain unclear. Based on these findings, it will be possible to generate earlier detection methods to identify the occurrence of immune alterations in silicosis as well as the appearance of a decreased antitumor immunity in asbestos-exposed populations. Additionally, research efforts should also be directed at discovering and identifying physiological substances from foods, plants, and other sources that can restore the immune status in people exposed to particulate and fibrous substances

    Biological Effects of Negatively Charged Particle-Dominant Indoor Air Conditions

    Get PDF
    To identify health-promoting indoor air conditions, we developed negatively charged particle-dominant indoor air conditions (NCPDIAC). Experiments assessing the biological effects of NCPDIAC comprised (1) 2.5-h stays in NCPDIAC or control rooms, (2) 2-week nightly stays in control followed by NCPDIAC rooms, (3) 3-month OFF to ON and ON to OFF trials in individual living homes equipped with NPCDIAC in their sleeping or living rooms, and (4) in vitro assays comparing the immune effects between negatively charged particle-dominant and control cell culture incubators. The most significant difference examined between NCPDIAC and control rooms in the 2.5-h stays was an increase in interleukin (IL)-2 with occupancy of the NCPDIAC room. For the 2-week nightly stay experiments, natural killer (NK) cell activity increased with occupancy of the NCPDIAC room. The 3-month OFF to ON trial showed an increase in NK cell activity, while the ON to OFF trial yielded a decrease in NK cell activity. Additionally, the in vitro assays also showed an increase in NK cell activity. The use of NCPDIAC resulted in increased NK cell activity, which has the effect of enhancing immune surveillance for the occurrence of cancer and improving symptoms associated with viral infections
    corecore