398 research outputs found

    Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell

    Full text link
    Plasmonic terahertz detection by a double-grating gate field-effect transistor structure with an asymmetric unit cell is studied theoretically. Detection responsivity exceeding 8 kV/W at room temperature in the photovoltaic response mode is predicted for strong asymmetry of the structure unit cell. This value of the responsivity is an order of magnitude greater than reported previously for the other types of uncooled plasmonic terahertz detectors. Such enormous responsivity can be obtained without using any supplementary antenna elements because the double-grating gate acts as an aerial matched antenna that effectively couples the incoming terahertz radiation to plasma oscillations in the structure channel.Comment: Submitted to APL, 8 pages, 2 figure

    Chromospheric Anemone Jets as Evidence of Ubiquitous Reconnection

    Full text link
    The heating of the solar chromosphere and corona is a long-standing puzzle in solar physics. Hinode observations show the ubiquitous presence of chromospheric anemone jets outside sunspots in active regions. They are typically 3 to 7 arc seconds = 2000 to 5000 kilometers long and 0.2 to 0.4 arc second = 150 to 300 kilometers wide, and their velocity is 10 to 20 kilometers per second. These small jets have an inverted Y-shape, similar to the shape of x-ray anemone jets in the corona. These features imply that magnetic reconnection similar to that in the corona is occurring at a much smaller spatial scale throughout the chromosphere and suggest that the heating of the solar chromosphere and corona may be related to small-scale ubiquitous reconnection.Comment: 10 pages, 5 figure

    Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

    Full text link
    Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape

    Total gastrectomy with simultaneous pancreaticosplenectomy or splenectomy in patients with advanced gastric carcinoma

    Get PDF
    A splenectomy or distal pancreaticosplenectomy is often performed simultaneously with total gastrectomy in the treatment of gastric carcinoma to facilitate dissection of the lymph nodes around the splenic artery and splenic hilus. However, the negative impact of splenectomy and pancreaticosplenectomy has also been reported. A retrospective analysis was performed to evaluate the outcomes of distal pancreaticosplenectomy and total gastrectomy, splenectomy and total gastrectomy, and gastrectomy alone in the patients with advanced gastric carcinoma without distant metastasis. Prognostic factors were examined. No significant differences existed in 5-year survival in the patients who underwent gastrectomy with splenectomy, gastrectomy with distal pancreaticosplenectomy, or gastrectomy alone. Neither splenectomy, nor distal pancreaticosplenectomy were prognostic factors. However, distal pancreaticosplenectomy was an independent predictor of pancreatic fistula. In conclusion, the addition of distal pancreaticosplenectomy or splenectomy to total gastrectomy for gastric cancer increases the risk of severe complications, but does not improve survival. © 1999 Cancer Research Campaig

    Overexpression of SMYD2 in gastric cancer

    Get PDF
    Background: SET and MYND domain-containing protein 2 (SMYD2) is a lysine methyltransferase for histone H3, p53 and Rb and inhibits their transactivation activities. In this study, we tested whether SMYD2 (1q42) acts as a cancer-promoting factor by being overexpressed in gastric cancer. Methods: We analysed 7 gastric cancer cell lines and 147 primary tumor samples of gastric cancer, which were curatively resected in our hospital. Results: SET and MYND domain-containing protein 2 was detected in these cell lines (five out of seven cell lines; 71.4%) and primary tumor samples (fifty-six out of one hundred and forty-seven cases; 38.1%). Knockdown of SMYD2 using specific small interfering RNA inhibited proliferation, migration and invasion of SMYD2-overexpressing cells in a TP53 mutation-independent manner. Overexpression of SMYD2 protein correlated with larger tumor size, more aggressive lymphatic invasion, deeper tumor invasion and higher rates of lymph node metastasis and recurrence. Patients with SMYD2-overexpressing tumours had a worse overall rate of survival than those with non-expressing tumours (P=0.0073, log-rank test) in an intensity and proportion score-dependent manner. Moreover, multivariate analysis demonstrated that SMYD2 was independently associated with worse outcome (P=0.0021, hazard ratio 4.25 (1.69–10.7)). Conclusions: These findings suggest that SMYD2 has a crucial role in tumor cell proliferation by its overexpression and highlight its usefulness as a prognostic factor and potential therapeutic target in gastric cancer

    The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun

    Full text link
    The dynamics of horizontal plasma flows during the first hours of the emergence of active region magnetic flux in the solar photosphere have been analyzed using SOHO/MDI data. Four active regions emerging near the solar limb have been considered. It has been found that extended regions of Doppler velocities with different signs are formed in the first hours of the magnetic flux emergence in the horizontal velocity field. The flows observed are directly connected with the emerging magnetic flux; they form at the beginning of the emergence of active regions and are present for a few hours. The Doppler velocities of flows observed increase gradually and reach their peak values 4-12 hours after the start of the magnetic flux emergence. The peak values of the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are 800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed substantially exceed the separation velocities of the photospheric magnetic flux outer boundaries. The asymmetry was detected between velocity structures of leading and following polarities. Doppler velocity structures located in a region of leading magnetic polarity are more powerful and exist longer than those in regions of following polarity. The Doppler velocity asymmetry between the velocity structures of opposite sign reaches its peak values soon after the emergence begins and then gradually drops within 7-12 hours. The peak values of asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and 710-940 m/s, respectively. An interpretation of the observable flow of photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102, P.4.12, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf
    corecore